
Advances in Software and
Spatio-Temporal Modelling with

Gaussian Processes

William Christopher Tebbutt

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Darwin College September 2022

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

William Christopher Tebbutt
September 2022

Acknowledgements

I would first like to thank my supervisors – Richard E. Turner, Emily Shuckburgh, and Scott
Hosking – for their guidance, patience, and advice. In particular Rich for many years of
mentorship.

I would like to thank Arno Solin for hosting me for two highly fullfilling and educational
months at Aalto in 2019, Mike Davey for his advice and guidance, and Carl Rasmussen and
Simo Särkkä for an enjoyable and instructive viva.

I have been fortunate in my friends and colleagues in Cambridge: Wessel Bruinsma – our
technical discussions have been formative – all past and current members of The Galapagogos,
Helen, my office mates in BE4-40, and Will and Millie – I could not have asked for better
people to be stuck in a house with for a year. I am grateful to Joel, Hannah, and Wessel for
providing light relief during the last days of writing this thesis. Finally I thank my family –
Mum, Dad, and Tom – for everything.

Abstract

This thesis concerns the use of Gaussian processes (GPs) as distributions over unknown
functions in Machine Learning and probabilistic modeling. GPs have been found to have
utility in a wide range of applications owing to their flexibility, interpretability, and tractability.
I advance their use in three directions.

Firstly, the abstractions upon which software is built for their use in practice. In modern GP
software libraries such as GPML, GPy, GPflow, and GPyTorch, the kernel is undoubtedly the
dominant abstraction. While it remains highly successful it of course has limitations, and I
propose to address some of these through a complementary abstraction: affine transformations
of GPs. Specifically I show how a collection of GPs, and affine transformations thereof, can
themselves be treated as a single GP. This in turn leads to a design for software, including
exact and approximate inference algorithms. I demonstrate the utility of this software through
a collection of worked examples, focussing on models which are more cleanly and easily
expressed using this new software.

Secondly, I develop a new scalable approximate inference algorithm for a class of GPs
commonly utilised in spatio-temporal problems. This is a setting in which GPs excel, for
example enabling the incorporation of important inductive biases, and observations made
at arbitrary points in time and space. However, the computation required to perform exact
inference and learning in GPs scales cubically in the number of observations, necessitating
approximation, to which end I combine two important complementary classes of approxi-
mation: pseudo-point and Markovian. The key contribution is the insight that a simple and
useful way to combine them turns out to be well-justified. This resolves an open question in
the literature, provides new insight into existing work, and a new family of approximations.
The efficacy of an important member of this family is demonstrated empirically.

Finally I develop a GP model and associated approximate inference techniques for the
prediction of sea surface temperatures (SSTs) on decadal time scales, which are relevant
when taking planning decisions which consider resilience to climate change. There remains a

viii

large degree of uncertainty as to the state of the climate on such time scales, but it is thought
to be possible to reduce this by exploiting the predictability of natural variability in the
climate. The developed GP-based model incorporates a key assumption used by the existing
statistical models employed for decadal prediction, thus retaining a valuable inductive bias,
while offering several advantages. Amongst these is the lack of need for spatial aggregation
of data, which is especially relevant when data are sparse, as is the case with historical ocean
SST data.

In summary, this thesis contributes to the practical use of GPs through a set of abstractions that
are useful in the design of software, algorithms for approximate inference in spatial-temporal
settings, and their use in decadal climate prediction.

Table of contents

List of figures xiii

List of tables xxi

1 Introduction and Background 1
1.1 Standard GP Regression . 2
1.2 Definition and Exact Inference . 3
1.3 Pseudo-Point Approximations . 5

1.3.1 Pseudo-Point Approximation as Variational Inference 7
1.3.2 The Unsaturated Bound . 9
1.3.3 The Saturated Bound . 12
1.3.4 Alternative Formulations of Pseudo-Point Approximations 13
1.3.5 Benefits and Limitations . 14

1.4 Outline and Contributions . 15

2 The Gaussian Process Probabilistic Programme 17
2.1 Introduction . 17

2.1.1 How Should Abstractions Be Judged? 20
2.1.2 Collaborators . 25

2.2 The GPPP . 25
2.2.1 The Single-Process Perspective 27

2.3 An Extensible Library of Affine Transformations 30
2.3.1 Some Curiosities . 39

2.4 Practical Considerations . 42
2.4.1 The Primary AbstractGPs.jl Interface 42
2.4.2 The Other Interfaces . 45
2.4.3 Other Important Implementation Details 46

2.5 A Climatological Example . 49

x Table of contents

2.6 The Interoperability Offered by Abstraction 51
2.6.1 Scalability with Pseudo-Point Approximations 51
2.6.2 Non-Gaussian Observation Models 58

2.7 Related Work . 59
2.7.1 Multi-Output GPs . 63
2.7.2 Revisiting Kernels . 63

2.8 Conclusion . 64

3 Combining Pseudo-Point and State Space Approximations 67
3.1 Introduction . 67
3.2 Sum-Separable Spatio-Temporal GPs . 69
3.3 State Space Approximations to Sum-Separable Spatio-Temporal GPs 69
3.4 Conditional Independence Results . 72

3.4.1 The Conditional Independence Structure of Separable GPs 73
3.4.2 Extending The Conditional Independence Result 74
3.4.3 Separability of the State-Space Approximation 75
3.4.4 Conditional Independence Structure of Observations and Pseudo-

Points Under a Separable Prior . 78
3.4.5 Conditional Independence Structure under a Sum-Separable Prior . 79

3.5 Utilising Separability to Obtain the Best of Both Worlds 81
3.5.1 Combining the Approximations 82

3.6 Inference Under Non-Gaussian Observation Models 87
3.7 Experiments . 88

3.7.1 Benchmarking . 88
3.7.2 Climatology Data . 89
3.7.3 Apartment Price Data . 92

3.8 Discussion . 92

4 Towards Gaussian Processes for Decadal Climate Prediction 95
4.1 The Decadal Prediction Problem . 95

4.1.1 Approaches to Decadal Prediction 97
4.2 Datasets and their Properties . 99
4.3 The Infinite Linear Mixing Model . 104

4.3.1 Approximate Inference . 109
4.4 Results . 112

4.4.1 Synthetic Data Experiments . 114
4.4.2 HadIOD . 116

Table of contents xi

4.5 Conclusion . 121

5 Discussion 123

References 127

Appendix A 141
A.1 Multiple Dispatch . 141

Appendix B 143
B.1 Conditional Independence Properties of Optimal Approximate Observation

Models . 143
B.1.1 Conditional Independence Structure 143
B.1.2 Approximate Inference via Exact Inference 146
B.1.3 Block-Diagonal Structure . 147

B.2 Additional Experiment Details . 148
B.2.1 Benchmarking Experiment . 148
B.2.2 Climatology Data . 149
B.2.3 Apartment Data . 150

B.3 Efficient Inference in Linear Latent Gaussian Models 151
B.3.1 Preliminaries . 151
B.3.2 Sampling . 152
B.3.3 Computing Marginal Probabilities 152
B.3.4 Computing the Log Marginal Likelihood and Posterior 152
B.3.5 Bottleneck Linear-Gaussian Observation Models 154
B.3.6 Benchmarking Inference . 155

List of figures

1.1 Left: distribution over function before data is observed. Right: distribution
over function after data is observed. Thin lines are sample paths, thick line
is the mean function, the filled interval is the mean function ±3 standard
deviations, and black dots are observations. 3

1.2 Simple pseudo-point approximation to exact inference. Thin lines are sample
paths, thick lines mean functions, filled regions ±3 standard deviations from
the mean, black dots are observations, and orange dots are the means of
pseudo-points. The pseudo-point approximate works reasonably well in this
problem because a small number of pseudo-points are able to summarise a
large number of noisy observations. 6

2.1 “Partly-noisy” regression. A small number of exact observations of f are
made, along with a larger number of observations of the noise-corrupted
process y. SEKernel is the exponentiated quadratic covariance function
with unit variance and length-scale. WhiteKernel is the white noise
kernel given by κ(x, x′) := σ2 I(x = x′). GPs are assumed to be zero-mean
if no mean function is provided. Top: code specification of the generative
model. Plotting code is suppressed for brevity. Bottom: posterior distribution
over f (blue) and y (orange). Shaded regions are µ± 3σ under the posterior.
Thin lines are samples from the posterior over f , bold line is posterior mean.
Blue dots are observations of f , small red dots are observations of y. The
posterior marginals of f have zero variance at exact observations of f , and
reduced variance where observations of y are made. 21

xiv List of figures

2.2 “Partly-biased partly-noisy” regression. A small number of exact observa-
tions of f (blue) are made, along with a larger number of observations of the
noise-corrupted process y (orange), a number of which are biased by some
amount b (black). SEKernel is the exponentiated quadratic covariance
function with unit variance and length-scale. WhiteKernel is the white
noise kernel, given by κ(x, x′) := σ2 I(x = x′). GPs are assumed to be
zero-mean if no mean function is provided. Top: code specification of the
generative model. Bottom: posterior distribution over f , y, and yb. Shaded
regions are µ ± 3σ under the posterior. Thin lines are samples from the
posterior over f , bold line is posterior mean. Blue dots are observations
of f , orange dots are observations of y, black dots are observations of yb.
The thick black line is the posterior mean of the bias, and the shaded region
around it is the ±3σ central credible interval. 22

2.3 “Partly-biased partly-noisy” regression. A small number of exact obser-
vations of f are made, along with a larger number of observations of the
noise-corrupted process y, a number of which are biased by some amount
b. SEKenrel is the exponentiated quadratic covariance function with unit
variance and length-scale. WhiteKernel is the white noise kernel given
by κ(x, x′) := σ2 I(x = x′). GPs are assumed to be zero-mean if no mean
function is provided. Top: code specification of the generative model. Bot-
tom: posterior distribution over f (blue), y (orange), and b (black). Shaded
regions are µ ± 3σ under the posterior. Thin lines are samples from the
posterior over f , bold line is posterior mean. Blue dots are observations of f ,
orange dots are observations of y, and black dots yb. The thick black line is
the posterior mean of b, and the shaded region around it is the ±3σ central
credible interval. 23

2.4 A very simple example of the affine transform interpretation of an input
transformation. Left: listing specifying generative model. We specify a
latent process f , and make observations of a noisy-version of Af , to which
a simple input transformation is applied. f ◦ (x->x / α) is the composition
of f and the anonymous function which computes its input divided by
α. Parentheses are unnecessary, and are included only for clarity. Right:
Posterior of f (top) and Af (bottom) given observations of y (red dots). . . 33

List of figures xv

2.5 GPPP models for the derivative and antiderivative of a function. The model
specified in the top left places a smooth prior over a function f and its
derivative process df . The right hand side is the same model, but is interpreted
differently. Thick lines are posterior means, filled regions are posterior
means ±3σ under the posterior, thin lines are posterior samples, and dots are
observations. 37

2.6 Convolution of fwith φ(x) := exp(x−2) to produce g. Left: posterior over f
and g given observations of both. Dots are observations of the correpsonding
component of the GPPP. Top left: code to specify this GPPP. 38

2.7 An example listing . 43
2.8 Another example listing . 46
2.9 Stheno.jl provides functionality to compute the covariance matrix be-

tween two collections of inputs (direct), rather than a standalone data struc-
ture that corresponds to the kernel of the GPPP (indirect). An example
involving the summation of two processes demonstrates the two approaches.
The direct approach yields a simpler implementation than the indirect ap-
proach. 48

2.10 GPPP to jointly model CO2 concentration and global average temperature. . 49
2.11 CO2 (top) and temperature (bottom) over time, in addition to the decomposi-

tion of the posterior distribution over . 50
2.12 Exact inference vs pseudo-point approximation to the posterior over a GPPP

comprising the sum of two GPs, f3 := f1+ f +2. A handful of observations
are made (black dots) of f1 and f3. Pseudo-points (purple triangles) are
placed in f1 and f2. Exact posterior marginals (mean±3 standard deviations)
are shown in blue, approximate posterior marginals in orange. 53

2.13 Listing for Fig. 2.12. 54
2.14 Approximate inference in the GP f3(x1, x2) :=

1
2
(f1(x1) + f2(x2)) which is

the direct sum of f1 and f2. N = 1000 observations are made of f3 (small
black dots), and M = 50 pseudo-points are used (large black dots). Ml = 25

of these are spaced regularly over the domain of f1, the other Ml = 25

over the domain of f2. Exact and approximate posterior quantities are
indicated in blue and orange respectively. Exact posterior mean is indicated
by background colour in heatmap. 57

xvi List of figures

2.15 Ratio of time taken to compute Cuu, Cuf , and the ELBO when pseudo-
inputs are located in f and f1, ..., fD, as D is varied between 1 and 15, with
N = 1000 and Ml = 10 fixed. Standardised EQ kernel is used for all
processes. For example, a ratio of 10 indicates that a computation takes 10
times longer when the pseudo-inputs are located in f than in f1:D. 58

2.16 Approximate posterior obtained using the Laplace and CVI approximations.
Top: GPPP in which approximate inference and learning are performed.
Middle: approximate posterior over each of the latent processes. Bottom:
observations of f2 (left) and f3 (right), and approximate posterior over
location-dependent rate. Dashed lines show the approximate posterior ob-
tained using CVI, while the solid lines and filled regions the approximate
posterior obtained using the Laplace approximation. 60

3.1 Spatial slice of a large-scale spatio-temporal modelling problem: The poste-
rior mean belief over max temperature (standardised scale, −3 3) on a
day in early 2020 around Seattle and Vancouver. Pink squares are weather
stations, orange dots are pseudo-points. 68

3.2 The total time to compute the log marginal likelihood (left) and its gradient
(right) of a GP with N observations for various inference methods, all of
which are exact. 70

3.3 Depiction of the conditional independence property in Eq. (3.9). The blue
square is f(r, τ), the red square is f(r′, τ ′), and the black circle is f(r, τ ′). . 72

3.4 Depiction of the conditional independence property in Eq. (3.11). The blue
squares are f(R, T), the red squares are f(R′, T ′), and the black circles are
f(R, T ′). 73

3.5 Under a separable GP prior, the random variables at the red squares are
conditionally independent of those at the blue squares given those at the
black circles. 76

3.6 Slices of the 3-dimensional rectilinear grid of pseudo-points / inputs, as well
as inputs of observations, depicting the conditional independence structure
presented in Theorem 3.4.3. Unfilled red squares correspond to fτ , black
circles to uτ , and filled blue squares to ū\uτ . The left-hand side corresponds
to d = 1, while the right-hand side corresponds to d > 1. Notice that uτ and
fτ only appear in the d = 1 slice. 79

List of figures xvii

3.7 Arbitrary Spatial Locations. Top: Locations of (pseudo-)inputs for Mτ = 10.
10 locations in space chosen randomly at each time point. Bottom: Time to
compute ELBO vs performing exact inference. ELBO tight for Mτ = 20;
see Fig. B.1. 89

3.8 Grid-with-Missings. Top: Locations of (pseudo-)inputs – note the grid
structure with 50 observations per time point, of which 5 are missing. Bottom:
Time to compute ELBO vs LML naively and via state space methods (sde).
ELBO tight for Mτ = 20; see Fig. B.1. 90

3.9 Counterpart to Fig. 3.1 depicting the posterior standard deviation. The colour
scale (0 1.75) is relative, pink squares are weather stations, and orange
dots pseudo-points. 90

3.10 Test Root Standardised Mean-Squared Error (RSMSE) and Negative Poste-
rior Predictive Log Probability (NPPLP). Marked points on Pseudo-Point
curves used M ∈ {5, 10, 20, 50} moving from left to right – similarly for
SoD markers, with the addition of M = 99, corresponding to learning with
the exact LML. Larger M improves performance, but time taken to train is
increased. Sum-Separable models take longer to train than Separable but can
produce better results. 91

3.11 Apartment price posterior mean and standard deviation on a day near the
end of 2020. Pseudo-point locations picked using K-means and marked with
orange dots. 91

4.1 HadISST EOFs pre-1945 (top) and post-1945 (bottom). We see that the
pre-1945 HadISST data set is half the resolution of the data set post-1945.
This is noted in the paper introducing the data set. Moreover it seems that
while the first EOF is fairly stable across time periods, the second and third
differ noticeably (after accounting for arbitrary sign changes). 100

4.2 Spatial mask applied to remove any data that lives outside of the Atlantic,
or outside of [−60, 70] degrees latitude, and [−80, 20] degrees longitude.
Observe that the Mediteranian Sea, South East Pacific, and Southern Ocean
are excluded. 113

4.3 Learning curves for variational inference with no parameter learning. Con-
vergence is attained in all cases well before 15000 iterations have occured.
Mean-Field takes the longest to converge and has the lowest ELBO at con-
vergence. 115

4.4 The true unobserved bases sampled from the prior. 116

xviii List of figures

4.5 Bases inferred using approximate inference. There is some variation in the
first basis, but the structured recovered is broadly the same for all of them,
up to a change of sign. Top: Mean-Field. Middle: DPO-LGB. Bottom:
DPO-BGL. Similar results are obtained for Exact-LGB and Exact-BGL as
for DPO-LGB and DPO-BGL respectively. 117

4.6 Learning curves for variational inference and parameter learning. Conver-
gence is attained in all cases well before 15000 iterations have occured.
Mean-Field again takes longer than before to converge, and has the lowest
ELBO at convergence. All methods take longer to converge than when the
model parameters are fixed, as expected. 118

4.7 DPO-LGB learning curve. 118
4.8 Posterior mean over h. Scale is in degrees celsius. 119
4.9 Samples from the posterior over x. j = (1, 2, 3) correspond to black, blue,

and red respectively. Note the periodicity in the x3, and the degree to which
the posterior is concentrated. 119

4.10 Time series of performance of the model in 5 regions. Top left: the five
regions of the Atlantic considered. Top right: Spatially-averaged prediction
in each region. Bottom left: average prediction at training data (solid line)
and observed mean of training data (dashed line) in each region in each
month. Bottom right: same as bottom left, but for test data. 120

A.1 Two examples of functions with multiple methods. 141
A.2 Implementations of cov which specialise on the particular kind of GP they

encounter. 142

B.1 The ELBO obtained vs the exact LML. The bound appears reasonably tight
when Mτ = 10 are used per time point, and very tight for Mτ = 20. Mτ = 5

is clearly insufficient. 148
B.2 Time to compute LML exactly vs ELBO with a sum of two separable kernels.

Left: irregular samples as per Fig. 3.7. Right: regular samples with missing
data as per Fig. 3.8. Observe that, due to the increased latent dimensionality
of the sum-separable model, it takes longer to compute the ELBO (and LML
using the vanilla state space approximation) than in the separable case. . . . 149

B.3 Analogue of Fig. B.1 for Fig. B.2. As before, Mτ = 5 is clearly insufficient
for accurate inference, while Mτ = 20 is very close to the LML. 150

List of figures xix

B.4 Black-circle=naive, red square=low rank, blue triangle=bottleneck. All
experiments conducted using M = 100 pseudo-points. Left: D = 1, Middle:
D = 2, Right: D = 3. 155

List of tables

3.1 Performance on apartment price data. Mτ = 75. 92

Chapter 1

Introduction and Background

Gaussian processes are flexible nonparametric distributions over real-valued functions, and
are utilised throughout machine learning, probabilistic modelling, and this thesis.

The simplest use of GPs is for non-linear regression with measurements made under Gaussian
noise. Simple extensions of this model replace the Gaussian observation noise with something
non-Gaussian. For example a Bernoulli distribution whose parameter is a function of the
GP is often used in classification problems, or a student’s-t distribution whose mean given
by the GP in a non-linear regression problem when the noise is thought to be heavy-tailed.
GPs have seen use in probabilistic treatments of numerics problems, such as approximate
integration of a function (Ghahramani and Rasmussen, 2003; O’Hagan, 1987, 1991; Xi
et al., 2018), line searches in optimisation (Mahsereci and Hennig, 2017), and differential
equation solvers (Archambeau et al., 2007; Duffin et al., 2021; Schober et al., 2019). They
are used extensively in the probabilistic treatments of global optimisation problems, known
as Bayesian optimisation, as models on which search directions are based (Hernández-Lobato
et al., 2017; Osborne et al., 2009; Snoek et al., 2012; Wu et al., 2017a,b). They have been
used as models for natural sounds (Turner, 2010), in audio signal analysis (Turner and
Sahani, 2011; Wilkinson et al., 2019a,b), to parametrise transition dynamics discrete-time
(Frigola et al., 2014; Ialongo et al., 2019, 2018) and continuous-time (Duncker et al., 2019;
Wilson et al., 2021) dynamical systems, in particular in model-based reinforcement learning
(Deisenroth and Rasmussen, 2011). They have been applied to the problem of simultaneous
localisation and mapping (SLAM) (Kok and Solin, 2018), automating work usually done
by a human statistician (Duvenaud et al., 2013; Steinruecken et al., 2019), solar power
forecasting (Dahl and Bonilla, 2019), as a model for a spatially- and temporally-varying
effective reproduction number in a large model for Covid-19 transmission model (Nicholson

2 Introduction and Background

et al., 2021), as a model for dimensionality reduction and density estimation (Adams et al.,
2008; Damianou et al., 2016; Lawrence and Hyvärinen, 2005; Lawrence, 2003; Titsias and
Lawrence, 2010), as the component model in deep probabilistic models (Damianou and
Lawrence, 2013; Duvenaud et al., 2014; Salimbeni et al., 2019), for multi-fidelity modelling
(Perdikaris et al., 2017), and in multi-output (multi-task) regression problems (Alvarez et al.,
2011; Bruinsma et al., 2020; Goovaerts, 1997; Requeima et al., 2019)

The above selection of applications is not intended to form an exhaustive list of uses of
GPs, simply a collection of uses I have encountered and find interesting, and is intended
to highlight the versatility of GPs through some of the many varied uses throughout the
literature. The common thread tying them together is the need to infer some unknown
real-valued function for which a concise parametric form is unavailable.

This short chapter provides a technical introduction to Gaussian processes and a family of
approximate inference methods known as pseudo-point approximations, as both are utilised
in each subsequent chapter. It concludes with an outline of the contributions of the remaining
chapters of the thesis.

1.1 Standard GP Regression

The simplest example of this is as a prior distribution over an unobserved function in non-
linear regression under noisy observations. Consider such a problem in which N real-valued
observations y := (y1, y2, ..., yN) are made of some unknown function at input locations
x := (x1, x2, ..., xN), under independent and identically-distributed (i.i.d.) Gaussian noise
with zero-mean and variance σ2. If a GP prior, f , is placed over the unknown function, then
it is possible to perform exact inference to obtain the posterior, f |y,x. This is depicted
in Fig. 1.1: the left panel depicts a particular GP prior distribution though a handful of
samples (thin wiggly lines) and the marginal statistics of the prior, indicated by the mean
(thick constant line at zero) ±3 standard deviations from it (the filled region). The right panel
depicts the posterior distribution over f , another GP, in the same manner. Notice how all of
the samples from the posterior run close to the data, and the uncertainty is much lower nearer
the data, reflecting the often desirable assumption that our model should be less uncertain
about the value of the function near where data have been observed.

The above example is but the simplest use-case for GPs in machine learning and probabilistic
modelling, but GPs are used in this manner in a surprisingly large number of situations.

1.2 Definition and Exact Inference 3

x
-4 -2 0 2 4

f

-2

0

2

x
-4 -2 0 2 4

Fig. 1.1 Left: distribution over function before data is observed. Right: distribution over
function after data is observed. Thin lines are sample paths, thick line is the mean function, the
filled interval is the mean function ±3 standard deviations, and black dots are observations.

1.2 Definition and Exact Inference

This section provides a more precise definition of a GP, introduces notation used throughout
this thesis, and explains how exact inference is performed in simple settings.

A GP is defined as a collection of random variables, the marginal distribution over any
subset of which is Gaussian (Rasmussen and Williams, 2006). This definition maps on
to the above example by associating with each x ∈ X := R a random variable f(x), and
specifying that the joint distribution over any subset f := [f(x1), ..., f(xN)] of the random
variables is a multivariate Gaussian. I refer to X as the domain of f , as it is the domain
of the functions sampled from it and need not be R.1 In the machine learning literature,
a GP is usually explicitly parametrised by a mean function, m : X → R, and covariance
function or kernel, κ : X × X → R. The mean function specifies the mean vector of f :
mf := [m(x1), ...,m(xN)], and the kernel the covariance matrix: [Cf]ij := κ(xi, xj). By

f ∼ GP(m,κ) , (1.1)

I mean that f is distributed according to a GP, which is to say that f is a stochastic process
satisfying the above conditions.

1X is often called the index set.

4 Introduction and Background

Exact posterior inference is tractable under a Gaussian observation model, reducing to some
standard linear algebra operations. Specifically, consider the simple hierarchical model for
non-linear regression discussed above:

f ∼ GP(m,κ) , yn | f ∼ N
(
f(xn), σ

2
)
, n ∈ {1, ..., N}. (1.2)

The posterior (conditional) distribution over f given y, denoted f ′ := f | y, is itself another
Gaussian process with mean function

m′(x) := m(x) + cf (x)
⊤ (

Cf + σ2I
)−1

(y −mf), (1.3)

where

cf (x) :=

κ(x, x1)
...

κ(x, xN)

 , (1.4)

and kernel
κ′(x, x′) := κ(x, x′)− cf (x)

⊤ (
Cf + σ2I

)−1
cf (x

′) . (1.5)

Thus the posterior marginal distribution over the GP at any finite collection of inputs x∗ is
again a multivariate Gaussian distribution, whose mean vector and covariance matrix are
given by applying Eq. (1.3) and Eq. (1.5) to x∗.

Thus far it has been assumed that the mean function and kernel are known. In practice the
mean function is typically set to 0 everywhere, and most of the hard work goes into selecting
the kernel. There are a number of different families of kernel from which to choose, and
they each tend to have a number of parameters θ that must be chosen. The most popular way
to pick these parameters is by maximising the log marginal likelihood of these parameters
given the observed data – this is known as Type-II maximum likelihood. That is, choosing θ

such that log p(y | θ) is maximised. Noting that p(y | f) = p(y | f) by definition (Eq. (1.2)),
the log marginal likelihood is simply

log p(y | θ) := log

∫
p(y, f | θ) df = logN

(
y;0,Cf + σ2I

)
(1.6)

where Cf and σ2 are functions of θ, but this dependence is suppressed in order to keep the
notation clean. This optimisation problem does not have a closed-form solution in general,
and is usually non-convex. Consequently, heuristic optimisation procedures are typically
applied, such as gradient-based optimisation procedures in conjunction with some kind of

1.3 Pseudo-Point Approximations 5

search over initialisations, in order to explore multiple modes of the log marginal likelihood.
Approximate Bayesian inference is sometimes performed over the hyperparameters, for
example using Hamiltonian Monte Carlo (Williams and Rasmussen, 1996). Recent work
by Lalchand and Rasmussen (2020) and Simpson et al. (2020) highlights the substantial
advantages that approximate inference over hyperparameters can provide relative to Type-II
maximum likelihood when the hyperparameters are poorly constrained by the prior and
observations.

Benefits and Limitations The above describes how exact inference in a Gaussian process
is performed, however, it is worth noting two key limitations. Firstly, it is necessary that
everything be jointly Gaussian – if the observation model for yn is not a Gaussian centred on
f , it would not have been possible to perform inference exactly. Tangentially, note that the
expressions for the posterior mean function, posterior kernel, and log marginal likelihood,
all involve the inverse of the matrix Cf + σ2I, and the log marginal likelihood also requires
the log determinant of this matrix. Since this matrix is positive definite, this is typically
implemented in terms of the Cholesky factorisation. Computing this factorisation requires
O(N3) operations, meaning that exact inference is limited to approximately N = 50, 000

observations in practice on modern hardware, and really not more than roughly N = 10, 000

on the machines accessible to most people.

It is important to remember, however, that Gaussian processes are one of only very few
distribution over functions in which exact Bayesian inference is tractable under any circum-
stances.2 In this sense, they are truly remarkable.

1.3 Pseudo-Point Approximations

Pseudo-point (also known as sparse, or inducing point) approximations are one possible
approach to approximating exact inference and learning in a GP when a large number of data
are available.

Roughly speaking, they do this by summarising the exact posterior induced through a
complete data set of N observations through a much smaller set of M carefully chosen
(uncertain) pseudo-observations, and perform well when a specific kind of over-sampling
structure is available in the problem. To understand this, consider Fig. 1.2. It depicts a
situation in which many noisy observations of the underlying function are available, but it is

2Student-t processes (Shah et al., 2014) are also tractable, but they are essentially just Gaussian processes
with a conjugate prior placed on the overall processes variance.

6 Introduction and Background

x
-4 -2 0 2 4

f

-2

0

2

observations exact approx mean(q(u))

Fig. 1.2 Simple pseudo-point approximation to exact inference. Thin lines are sample paths,
thick lines mean functions, filled regions ±3 standard deviations from the mean, black
dots are observations, and orange dots are the means of pseudo-points. The pseudo-point
approximate works reasonably well in this problem because a small number of pseudo-points
are able to summarise a large number of noisy observations.

1.3 Pseudo-Point Approximations 7

clear that the same posterior could be induced using a small set of observations made under
only a small amount of noise.

You might hope that by carefully constructing a small set of pseudo-observations it would be
possible to avoid scaling cubically in N . This is indeed the case, and it is in situations like
that described above in which pseudo-point approximations shine.

In this section I review in depth the most popular formulation of pseudo-point approximation,
detailing in particular

• how it is formalised through variational inference,

• how is can be used to efficiently produce marginal predictions,

• how it can be used to construct an objective function which scales (sub-)linearly in N ,

• a variety of different ways to implement the approximation in practice, which can
effect how well the approximation works,

• other ways to formalise pseudo-point approximations,

• and a summary of the benefits that it affords, and where its limitations lie.

1.3.1 Pseudo-Point Approximation as Variational Inference

Consider a GP, f ∼ GP(m,κ), of which N observations y ∈ RN are made at locations
x ∈ XN through observation model

p(y | f) :=
N∏

n=1

p(yn | fn) , fn := f(xn) . (1.7)

Suppose (briefly) that X is finite. The seminal work of Titsias (2009), revisited by Matthews
et al. (2016), can be viewed as proposing to approximate the exact posterior distribution over
f given y with another GP of the form

q(f) = q(u) p(f ̸=u |u) , (1.8)

where um := f(zm) are the pseudo-points for a collection of M pseudo-inputs z, and
f ̸=u := f \ u are all of the random variables in f except those used as pseudo-points.
p(f ̸=u |u) is the exact conditional distribution of the GP given u, and q(u) is assumed to be
an arbitrary multivariate Gaussian with mean mq

u and covariance matrix Cq
u.

8 Introduction and Background

More notation is required to explain how particular values for mq
u an Cq

u are chosen. First
parition the random variables in f into three disjoint subsets: u, f , f ̸=u,f := f \ u ∪ f – in
what follows f and {u, f , f̸=u,f} are interchanged freely since they correspond to the same
collection of random variables. This further implies that we may re-state Eq. (1.8) as

q(f) = q(u) p(f |u) p(f ̸=u,f |u, f) , (1.9)

and
p(f) = p(u) p(f |u) p(f ̸=u,f |u, f) . (1.10)

Noting that y ⊥⊥ u ∪ f ̸=u,f | f so p(y | f) = p(y | f), particular values for mq
u and Cq

u are
now chosen by minimising the Kullback-Leibler (KL) divergence between q and the exact
posterior:

KL[q(f) ||p(f |y)] = log p(y) + Eq

[
q(f)

p(f) p(y | f)

]
= log p(y) + Eq

[
log

q(u)

p(u) p(y | f)
p(f |u) p(f ̸=u,f |u, f)
p(f |u) p(f ̸=u,f |u, f)

]
. (1.11)

Noting that the final ratio cancels, we see why the particular choice of q(f) is crucial – the
dimension of f , and therefore f ̸=u,f , is typically uncountably infinite, so it is vital that they
do not appear in any computations that are needed in practice. Given this, and further noting
that y ⊥⊥ u | f , the above simplifies to

KL[q(f) ||p(f |y)] = log p(y) +KL[q(u) ||p(u)]− Eq[log p(y | f)] . (1.12)

This is an instance of Variational Inference (a.k.a. Variational Bayes – see e.g. (Murphy,
2012)).

The pseudo-inputs z are also variational parameters, and can be chosen to minimise Eq. (1.11)
without risking over-fitting. In practice the resulting optimisation problem is quite hard,
so the pseudo-input locations are often fixed if working in low-dimensional domains, or a
simple heuristic employed in higher-dimensions (Burt et al., 2020a). In what follows the
dependence of q(u) on z will be suppressed.

Making Predictions Recall that the conditional distribution f | u has density

p(f |u) = N (f ;mf +CfuΛu(u−mu),Cf −CfuΛuCuf) , (1.13)

1.3 Pseudo-Point Approximations 9

where Λu := C−1
u , [Cu]ij := κ(zi, zj), [Cfu]ij := κ(xi, zj), Cuf := C⊤

fu, and [mu]i :=

m(zi). Noting that Cf appears in the expression for its covariance matrix, it is clear that this
distribution is intractable in the same sense that the prior is – operations such as sampling,
density calculation, and covariance calculation require O(N3) operations. A key insight,
however, is that many applications require only the marginals, not the entire joint distribution.
This means that it is often sufficient to obtain only the diagonal of the covariance, requiring
only O(NM2 +M3) operations which, crucially, is linear in N .

In practice, one typically also marginalises over u to obtain the marginals of q(f), which has
density

N (f ;mf +CfuΛu(m
q
u −mu),Cf −CfuΛu(Cu −Cq

u)ΛuCuf) . (1.14)

Operations on this have essentially the same computational properties as those on f | u.

Infinite Domains The preceeding manipulations assumed X to be finite in order to enable
a simplified derivation of the key results in Eq. (1.12) and Eq. (1.14). Matthews et al. (2016)
provide a measure-theoretic treatment of the above which handles the technical problems
that arise when X is infinite, and produce precisely the same results. In the remainder of this
work, X may therefore be assumed to be infinite.

1.3.2 The Unsaturated Bound

Through the application of Gibbs’ inequality (see e.g. MacKay (2003)), which states that the
KL divergence is non-negative, a lower bound on the log p(y) can be derived from Eq. (1.12):

log p(y | θ) ≥ Eq[log p(y | f)]−KL[q(u) ||p(u)] =: Lu. (1.15)

This kind of lower bound is typically referred to as the ELBO – Evidence Lower BOund
– as log p(y) is also known as the evidence. It is common practice to optimise the ELBO
with respect to (w.r.t.) both θ and the variational parameters which specify q(u). Henceforth,
this particular ELBO will be referred as the unsaturated bound. It was first considered by
Hensman et al. (2013), and has the advantage that a simple unbiased estimator for it, and
its gradient w.r.t. the parameters of q, can be constructed that requires evaluation of only
a mini-batch of the elements in y. To see how this is achieved, first apply the conditional
independence assumption made previously in Eq. (1.7) to conclude that:

Eq[log p(y | f)] =
N∑

n=1

Eq(fn)[log p(yn | fn)] . (1.16)

10 Introduction and Background

From here, the estimator for the unsaturated bound is constructed by selecting a minibatch
comprising L elements of y, chosen uniformly at random (with replacement), and computing

N

L

L∑
l=1

Eq (fn(l))

[
log p

(
yn(l)

∣∣ fn(l))]− KL[q(u) ||p(u)] , n(l) ∼ Uniform(1, ..., N) .

(1.17)
The variance of this estimator can be controlled by choosing the value of L. A greater value
of L reduces the variance, but increases the cost of computing the estimator. Conversely,
a smaller value of L increases the variance while decreasing the cost of computing the
estimator. Consequently, a trade off must be struck, and in practice L is often chosen to be
on the order of 102 or 103.

The best way to optimise this bound in practice remains an open question, but substantial
progress has been made. There is consensus that a gradient-based approach is best, but
different studies take slightly different approaches. Hensman et al. (2013) performed natural
gradient ascent (Amari, 1998) w.r.t. the parameters of q, and gradient ascent with momentum
for the kernel parameters. Salimbeni et al. (2018) investigate a number of different schemes
for optimising the unsaturated bound, noting in particular that the step size in the natural
gradient ascent scheme must be increased throughout the course of learning in order to
achieve optimal performance, and that combining ADAM (Kingma and Ba, 2015) with
natural gradient ascent produces poor results. Recently, Adam et al. (2021) proposed
an alternate parametrisation of q(u) in which natural gradient ascent is performed. This
parametrisation loosens the coupling between the optimal choice for q(u) and the kernel
parameters, and enabling faster and more stable learning in practice.

More generally, many authors do not employ natural gradients at all, and simply apply the
ADAM optimiser jointly to the parameters of q and the kernel, such as Borovitskiy et al.
(2020), and some place restrictions the covariance matrix of q(u), for example Borovitskiy
et al. (2021) require that it be diagonal. There are several important ways to parametrise
q(u), which I now detail.

The Centred and Non-Centred Parametrisations The centred parametrisation refers to
choosing q(u) to be

q(u) := N (u;mq
u,C

q
u) , (1.18)

where m and C are optimised directly. Conversely, the non-centred parametrisation refers to
choosing

q(u) := N
(
u;mu +U⊤mq

ε,U
⊤Cq

εU
)
, U⊤U = Cu. (1.19)

1.3 Pseudo-Point Approximations 11

The non-centred parametrisation can be interpreted as directly parametrising the approximate
posterior distribution over ε := U−⊤(u − mu) as q(ε) := N (ε;mq

ε,C
q
ε), whose prior

distribution is N (0, I).

This terminology dates back to Gelfand et al. (1995) in a slightly different setting from ours.
They would term the former parametrisation centred because the mass of the distribution is
located around the parameter m, whereas the mass in the latter is located around mu+U⊤m

instead.3 These parametrisations are alternatively known as the unwhitened and whitened
respectively, owing to white noise being uncorrelated.

Which parametrisation yields an easier optimisation problem is context-specific, depending
on the relative strength of the prior and observation model (Gorinova et al., 2020). There
has been surprisingly little work specific to GPs conducted which investigates this trade off
empirically – Adam et al. (2021) do however discuss it in the context of developing another
parametrisation (discussed next), noting that they found it yielded better hyperparameter
optimisation performance in their experiments. Some basic intuition can be gained here by
observing that non-centred parametrisation for q(u) is itself a function of the kernel. This
means that q(u) will change depending on the kernel for fixed mq

ε and Cq
ε. Clearly, given

observations such as that made by Gorinova et al. (2020), this is not a uniformly beneficial
property, but it is what separates the two approximations.

One unquestionable advantage of the non-centred parametrisation is simply that it requires
fewer operations (in absolute terms) to compute the unsaturated bound than does the centred
parametrisation. For example, consider the KL-divergence between q(u) and p(u) under
each parametrisation:

Centred:
1

2

[
tr
(
Cq

uC
−1
u

)
+ (mq

u −mu)C
−1
u (mq

u −mu)−M − log det(Cq
uC

−1
u)

]
,

Non-Centred:
1

2

[
tr(Cq

ε) + ∥mq
u∥

2
2 −M − log detCq

ε

]
.

The simplification occurs here because p(ε) = N (ε;0, I). Similarly, the approximate
posterior marginal distributions over a vector of random variables f are

Centred: N (f ;mf +CfuΛu(m
q
u −mu),Cf −CfuΛu(Cu −Cq

u)ΛuCuf)

Non-Centred: N
(
f ;mf +CfuU

−1mq
ε,Cf −CfuU

−1(I−Cq
ε)U

−⊤Cuf

)
.

3More precisely, I refer to the former parametrisation as centred because mq
u is located at the centre of

the ellipse formed by any contour of constant probability density under q(u). Gelfand et al. (1995) do not
themselves provide this specific formalisation of the terminology, but it seems appropriate.

12 Introduction and Background

where U⊤U = Cu as before. The most important difference in this case is the need
only to compute CfuU

−1 under the non-centred parametrisation, as opposed to CfuΛu =

CfuU
−1U−⊤ under the centred parametrisation.

The Pseudo-Observation Parametrisation Panos et al. (2018) and Adam et al. (2021)
both investigate parametrisations for q(u) which are (morally speaking) of the form

q(u) ∝ N (u;mu,Cu)N (yq;u,Sq) , (1.20)

where yq ∈ RM , Sq ∈ SM
+ , and SM

+ denotes the positive semi-definite matrices of size M×M .
Phrased differently, they parametrise the approximate posterior over the pseudo-points as the
exact posterior of a surrogate model over u, in which the prior is that of the actual model,
and the observation model has density N (yq;u,Sq). Consequently, I refer to yq and Sq as
pseudo-observation parameters.

Panos et al. (2018) and Adam et al. (2021) take somewhat different approaches to working
with parametrisations of this form. Panos et al. (2018) constrain Sq to be diagonal, and
perform stochastic gradient ascent. This approach has the property that for N = M , the
optimal approximate posterior is within the family. The hope is that when there are enough
pseudo-points the approximation will be nearly optimal, but that this optimum will be
easier to obtain because there are only O(M) variational parameters to optimise, rather than
O(M2).

Conversely, Adam et al. (2021) parametrise the observation model in terms of its natural
parameters ([Sq]−1yq,−1

2
[Sq]−1), and perform natural gradient ascent w.r.t. these. Crucially

they allow Sq to be dense, meaning that they can recover the optimal approximate posterior.
As discussed before, the primary advantage of this parametrisation is the reduced coupling be-
tween the parameters of q(u) and the kernel parameters, which can lead to faster convergence
during learning.

I build on this family of parametrisations in Chapter 4.

1.3.3 The Saturated Bound

Thus far I have discussed what is known as the unsaturated bound, which is amenable to
iterative gradient-based optimisation, can work with non-Gaussian observation models, and
scales well to very large data sets through mini-batching. However, in some situations it is
possible to derive a closed-form expression for the optimum, circumventing the need for
iterative optimisation.

1.3 Pseudo-Point Approximations 13

Specifically, subject to the constraint imposed in Eq. (1.8), if the observation model is of the
form

p(y | f) :=
N∏

n=1

p(yn | fn) = N (y; f ,S) (1.21)

where S ∈ RN×N is a positive-definite diagonal matrix, then the q(u) which maximises the
unsaturated bound for any particular set of kernel parameters and pseudo-inputs is:

q(u) ∝ N (y;CfuΛuu,S)N (u;0,Cu) . (1.22)

Further, the value of the unsaturated bound at this optimum is

L = logN (y;mf ,CfuΛuCuf + S)− 1

2
tr
(
S−1(Cf −CfuΛuCuf)

)
, (1.23)

and is known as the saturated bound. It can be computed using only O(NM2) operations
using the matrix inversion and determinant lemmas, or through the projection trick described
by Bruinsma et al. (2020) in a slightly different context.

The saturated bound requires a pass over the entire training data set each time it or its gradient
w.r.t. the kernel parameters and pseudo-input locations is required. This means that its
use is limited to situations in which only a moderate number of observations are available
– for example in Chapter 3 I utilise it on a problem comprising O(105) training examples.
The restriction that the observation model must be Gaussian limits application to non-linear
regression under Gaussian noise. Regardless, the saturated bound remains interesting for
a couple of reasons. Firstly, when the above criteria are fulfilled, textbook quasi-Newton
optimisation algorithms such as BFGS (see e.g. Nocedal and Wright (1999)) can be employed
to find good kernel parameters, generally leading to convergence in a hundred or so iterations
with robust automatic procedures for assessing convergence. This contrasts to the tens or
hundreds of thousands which may be required when optimising the unsaturated bound via a
variant of stochastic gradient ascent, and the increased difficulty in assessing convergence.

Moreover, it is a useful object to study when developing parametrisations for q(u) – it
is important to know whether a given parametrisation contains the optimal approximate
posterior or not. It is for these reasons that I study this version of the bound in Chapter 3.

1.3.4 Alternative Formulations of Pseudo-Point Approximations

The precise formulation for pseudo-point approximations described above is the most popular
one currently in use, and widely considered a gold-standard method, but it took a while for

14 Introduction and Background

the community to arrive at this particular formulation. The excellent reviews of Quiñonero-
Candela and Rasmussen (2005) and Bui et al. (2017) provide additional context on this
front.

Eq. (1.22) coincides with the exact posterior distribution over u under an approximate model
with observation density N (y;CfuΛuu,S), and that the first term in Eq. (1.23) is the log
marginal likelihood under this approximate model. It is well known that this approximate
model is precisely the approximation employed by Seeger et al. (2003), known as the
Deterministic Training Conditional (DTC). Despite their similarities, the DTC log marginal
likelihood and the ELBO typically yield quite different kernel parameters and pseudo-inputs
when optimised for – while the pseudo-inputs z are variational parameters in the variational
approximation, and therefore not subject to overfitting (see section 2. of Bui et al. (2017)),
they are model parameters in the DTC. For this reason, the variational approximation is
widely favoured over the DTC.

However, the fact that the variational approximation is so closely related to a low-rank
approximate model remains useful computationally, and is utilised in Sec. 3.5 to obtain
algorithms which combine pseudo-point and state-space approximations in a manner which
is both efficient, and easy to implement.

1.3.5 Benefits and Limitations

As discussed above, pseudo-point approximations perform well when many more observa-
tions of a GP are made than are needed to accurately describe its posterior; in such settings
the approximation enables training and inference in GP models on extremely large data sets.
This is often the case for regression tasks where the inputs are sampled independently from
a light-tailed distribution. This is because the value of M required to maintain an accurate
approximation does not increase too quickly as N increases—indeed Burt et al. (2019)
showed that if the inputs xn are sampled i.i.d. from a Gaussian, then the value of M required
scales sub-linearly in N . The consequence of poor approximation will be poor predictions,
in particular due to the ELBO forming a poor hyperparameter optimisation objective when it
is loose. Recently, Artemev et al. (2021) and Burt et al. (2021) have attempted to address the
quality of the log marginal likelihood approximation offered by the ELBO through Krylov
subspace methods employed by Gibbs and MacKay (1997) and Gardner et al. (2018b).

An especially pathological case for pseudo-point approximations are time series. Bui and
Turner (2014) noted that because the interval in which the observations live typically grows
linearly in N . Consequently the number of pseudo-points M required to maintain a good

1.4 Outline and Contributions 15

approximation must grow linearly in N , so the cost of accurate approximate inference
using pseudo-point methods is really O(N3) in this case. Indeed Tobar (2019) formalised
this, showing that the number of the pseudo-points per unit time must not drop below a
rate, analogous to the Nyquist-Shannon rate, if an accurate posterior approximation is to
be maintained as N grows. Appropriately, different classes of approximation have been
developed for time series which exploit entirely different kinds of structure, and are discussed
at length in Chapter 3.

The version of this approximation presented can only make marginal predictions efficiently,
or joint predictions over the GP at small collections of inputs, as discussed above. This
is primarily troublesome as it means that it is not possible to efficiently generate samples
from the approximate posterior joint distribution at a large collection of test points. Wilson
et al. (2021) recently proposed a technique for generating these samples efficiently, but it
requires additional approximation. This technique is discussed further in Chapter 4, where
it is utilised to perform approximate inference in a setting where access to sample paths is
required.

1.4 Outline and Contributions

The rest of this thesis is divided into three chapters, and a summary.

Chapter Two concerns the abstractions used in the creation of software for working with
GPs in practice. In particular it concerns software which enables the construction of new
GPs from affine transformations of existing GPs. This is useful because many GPs in the
literature are defined in this manner, but the software in use today does not reflect this. This
chapter makes several contributions on this front:

• a mathematical formalism which describes the above, with a crucial composability
property that ensures interoperability with existing algorithms and methods for exact
and approximate inference and learning,

• a methodology and algorithm for implementing such software, and

• numerous case studies demonstrating the utility of the abstraction.

Chapter Three develops a pseudo-point approximation for spatio-temporal problems. It
does this by showing how pseudo-point approximations can be combined with state-space
approximations, which excel in time series problems. Its primary contribution is to show that
the optimal approximate posterior has a Markov property, subject to some restrictions on the

16 Introduction and Background

locations of pseudo-inputs. Knowing that this is the best that is possible is of value in itself.
It also means that one can simply apply a pseudo-point approximation and utilise standard
algorithms for fast inference which exploit Markov structure, safe in the knowledge that no
additional approximations have been introduced. There are numerous things that can be done
immediately with this result, and this chapter focuses on spatio-temporal GPs with Gaussian
observation models, in which the optimal approximate posterior is itself Gaussian.

Chapter Four investigates the potential for the use of GPs in the problem of decadal
prediction. Existing models used by climate scientists have some technical restrictions,
notably the need to utilise data on a grid. This restriction is especially notable in problems
involving ocean data, which comprises mostly point measurements from roaming sensors. In
this chapter I investigate the potential to extend an existing class of model used for decadal
prediction by replacing a couple of components with GPs. The resulting model is able to
handle un-gridded data, but the posterior distribution is highly non-Gaussian, and provides a
challenging approximate inference problem. Several approaches to approximate inference
are investigated on synthetic data sets, and an extension to the pseudo-observation paradigm
proves useful. Experiments are also conducted on a subset HadIOD, a high-quality ocean
data set comprising many hundred of millions of ocean surface temperature measurements,
demonstrating the efficacy of the extension in practice.

Finally, Chapter Five provides a summary of the presented work, and discusses important
open questions and future work it raises.

Chapter 2

The Gaussian Process Probabilistic
Programme

2.1 Introduction

This chapter develops an abstraction which can be employed in the creation of software
frameworks for GPs, and shows the benefits this affords one such framework in practice.
This abstraction is centred on affine transformations of GPs, by which I mean processes
induced by sampling from a given GP and applying an affine transformation to the sample.
The result is another GP, so I refer to this property as closure – GPs are closed under affine
transformation, and also linear transformation. This class of transformation is important
because almost all GPs in the literature are specified recursively through some composition
of affine transformations of other GPs. A few examples include additive GPs, GPs whose
inputs are transformed, multi-output GPs, integrals of GPs used in probabilistic numerics,
derivatives of GPs used in Bayesian optimisation, and convolutions of GPs.

I refer to the software available prior to the development of this work as kernel-centric. It
exposes only a subset of the components of a model to the user and, while this abstraction has
proven highly successful, it makes it hard to undertake some useful and seemingly-simple
inference tasks in practice. For example, consider the model

f1 ∼ GP(0, κ1) , f2 ∼ GP(0, κ2) , f3 := f1 + f2. (2.1)

Note that f3 is a linear transformation of f1 and f2, and is another GP – the precise details
are expanded upon later. Existing frameworks typically make it straightforward to implement

18 The Gaussian Process Probabilistic Programme

such models, but only make it possible to condition on observations of f3, and to inspect the
posterior distribution over f3. This is because they express the above model in terms of the
kernel and marginal distribution of f3:

f3 ∼ GP(0, κ3) where κ3 := κ1 + κ2. (2.2)

However, it is equally meaningful to condition on observations of f1, f2, or both, and to
interrogate the posterior distribution over either process – kernel-centric frameworks typically
permit neither of these possibilities.1 Phrased differently, kernel-centric frameworks fail
to provide access to the joint distribution over the entire model, in favour of the marginal
distribution over the final process.

Moreover, fundamentally it is the assumptions expressed in Eq. (2.1) that one cares about
when modelling a phenomenon. Consider that, when one is first introduced to GPs and
ways to combine kernels, one is typically told something along the lines of the GP induced
by the sum of two kernels is equivalent to the GP induced by summing samples from two
independent GPs. This translation is straightforward enough, and as a consequence does
not cause too much trouble. A slightly more involved example is integration. Consider the
Gaussian random variable g induced by

f ∼ GP(0, κ) , g :=

∫
f(x) dπ(x) (2.3)

for some measure π. In this example it is quite possible that a user may wish to make
observations of f in order to infer something about g (Ghahramani and Rasmussen, 2003;
O’Hagan, 1991), or observe g in order to infer properties of f (see e.g. Tanaka et al. (2019)),
or some combination of the two. The precise form of the kernel is not obviously of interest
to the modeller. That being said, in this example, g has variance∫∫

κ(x, x′) dπ(x) dπ(x′), (2.4)

and the covariance between g and any point x in f is∫
κ(x, x′) dπ(x′). (2.5)

The exposure of these expressions to the users of software seems undesirable.

1Salvatier et al. (2016) have implemented the decomposition of the posterior over f1 and f2 under this kind
of model, as it constitutes an important and well-known special-case. It is, however, limited to models of this
form, and does not extend to allowing observations of f1 or f2.

2.1 Introduction 19

What is required in this example is a software abstraction in which a user can directly express
Eq. (2.3), and separately express which bits of f and g they are interested in performing
inference on, given observations of f , g, or both. More generally what is needed is the
ability to express a range of affine transformations of GPs, mix and match them in different
ways depending on the situation, to provide new affine transformations, to condition on any
component of a model, and to perform inference on any component of a model.

For a slightly more involved problem, consider the classical noisy regression problem, in
which we wish to infer some latent function given noise-corrupted observations, where the
noise is assumed to be i.i.d. and Gaussian. One reasonable approach to this problem is to
place a GP prior f over the unknown function, another GP prior ε over a “noise process”,
and assume that the process of which we make observations, y, is the sum of these two
processes. This problem is firmly within-scope for existing GP software. Now suppose that
we also have access to some direct observations of f , as shown in Fig. 2.1. Libraries such as
AbstractGPs.jl make this straightforward to do because they enable a different noise
variance to be specified for each observation – other existing GP frameworks have similar
features. So, again, this remains within-scope for existing frameworks, but is likely to be
slightly less clean to implement.

Now suppose that we suspect that some known subset of our observations have an unknown
systematic bias. We might model this with the following generative procedure:

f ∼ GP(0, κ)
ε ∼ GP

(
0,Noise

(
σ2
))

y = f + ε

b ∼ N (0, 1)

g = f + b

yb = g + ε (2.6)

As before, observations of y and f are made, but also yb. The results of inference in this
type of model are shown in Fig. 2.2. Inference in this problem might also be possible to
handle within existing GP frameworks, perhaps through the use of a multi-output GP, but
this approach has its limitations and has interpretability problems – see Sec. 2.7.1. Finally,
it is only a small generalisation to suppose that the bias is not constant, but instead varies
smoothly over time, as depicted in Fig. 2.3. Again, more work is required on the part of the
person implementing the model to encode in the kernel information that could conceivably
have been extracted in an automatic fashion from the described generative model.

20 The Gaussian Process Probabilistic Programme

Moreover, it is not hard to imagine other kinds of measurements which are even more
involved – perhaps the biased measurement is actually an integral measurement, representing
a noisy average of f over time. It could also be a derivative measurement, if a given sensor
is only capable of measuring the change in a quantity through time. These are both linear
transformations of the underlying process, so it ought to be possible to make it straightforward
for them to be expressed in a given model.

In this chapter I develop the mathematical, algorithmic, and practical underpinnings of a
simple abstraction which does exactly this. It builds directly on top of a standard kernel-
centric framework, meaning that it adds more functionality, and does not necessitate choosing
between the existing GP software designs and what is proposed here – they can be mixed and
matched in whichever manner is most convenient in a given situation. Moreover, existing
approaches to approximate inference on GPs with non-Gaussian observation models are
trivially compatible with what is developed, as are pseudo-point approximations. The listings
in Fig. 2.1, Fig. 2.2, and Fig. 2.3, comprise code which can be executed to construct a
GP using a concrete implementation of this abstraction, Stheno.jl , written in the Julia
programming language (Bezanson et al., 2012).2

2.1.1 How Should Abstractions Be Judged?

This work does not come equipped with any obvious numerical measures that one can
compute in order to assess whether it is valuable. In this sense it departs from the usual
situation encountered in machine learning, where such measures can usually be obtained in
short order. Therefore, I lay out the basis on which the contribution in this chapter ought to
be judged, thus motivating the content of the remainder of the chapter.

Firstly, note that the abstractions developed in this work are complementary to existing
kernel-centric approaches – they co-exist within the same set of abstractions discussed in
Sec. 2.4.1, and are essentially built on top of them. Consequently it is not a question of
whether to replace kernel-centric concepts with what is discussed here, but whether these
should be built in addition. So the question is simple: is implementing this software worth
the effort?

As to its worth, it is necessary only to demonstrate the existence of useful models and
associated inferences, that can be cleanly expressed with this process-centric abstraction but
which cause difficulties in a kernel-centric abstraction. To this end, I have explored a variety
of affine transformations, the kinds of GPs they produce, and how these relate to those in

2Available at https://github.com/JuliaGaussianProcesses/Stheno.jl

https://github.com/JuliaGaussianProcesses/Stheno.jl

2.1 Introduction 21

x
-4 -2 0 2 4

-6

-3

0

3

Specify model.
f = @gppp let

f = 1.5 * GP(SEKernel())
ε = 0.5 * GP(WhiteKernel())
y = f + ε

end

Specify input locations.
x_f = GPPPInput(:f, rand(Uniform(-5, 5), 3))
x_y = GPPPInput(:y, rand(Uniform(-5, 5), 8))
x = vcat(x_f, x_y)

Construct posterior process.
f_post = posterior(f(x), y)

Fig. 2.1 “Partly-noisy” regression. A small number of exact observations of f are made,
along with a larger number of observations of the noise-corrupted process y. SEKernel
is the exponentiated quadratic covariance function with unit variance and length-scale.
WhiteKernel is the white noise kernel given by κ(x, x′) := σ2 I(x = x′). GPs are
assumed to be zero-mean if no mean function is provided. Top: code specification of the
generative model. Plotting code is suppressed for brevity. Bottom: posterior distribution
over f (blue) and y (orange). Shaded regions are µ± 3σ under the posterior. Thin lines are
samples from the posterior over f , bold line is posterior mean. Blue dots are observations of
f , small red dots are observations of y. The posterior marginals of f have zero variance at
exact observations of f , and reduced variance where observations of y are made.

22 The Gaussian Process Probabilistic Programme

x
-4 -2 0 2 4

-6

-3

0

3

f = @gppp let

Latent process and noisy observations.
f = 1.5 * GP(SEKernel())
ε = 0.5 * GP(WhiteKernel())
y = f + ε

Noisy observations with unknown constant bias.
b = 2.0 * GP(ConstantKernel())
g = f + b
yb = g + ε

end

Fig. 2.2 “Partly-biased partly-noisy” regression. A small number of exact observations
of f (blue) are made, along with a larger number of observations of the noise-corrupted
process y (orange), a number of which are biased by some amount b (black). SEKernel
is the exponentiated quadratic covariance function with unit variance and length-scale.
WhiteKernel is the white noise kernel, given by κ(x, x′) := σ2 I(x = x′). GPs are
assumed to be zero-mean if no mean function is provided. Top: code specification of the
generative model. Bottom: posterior distribution over f , y, and yb. Shaded regions are µ±3σ
under the posterior. Thin lines are samples from the posterior over f , bold line is posterior
mean. Blue dots are observations of f , orange dots are observations of y, black dots are
observations of yb. The thick black line is the posterior mean of the bias, and the shaded
region around it is the ±3σ central credible interval.

2.1 Introduction 23

x
-4 -2 0 2 4

-6

-3

0

3

f = @gppp let

Latent process and noisy observations.
f = 1.5 * GP(SEKernel())
ε = 0.5 * GP(WhiteKernel())
y = f + ε

Noisy observations with unknown varying bias.
b = stretch(GP(SEKernel()), 0.3)
g = f + b
yb = g + ε

end

Fig. 2.3 “Partly-biased partly-noisy” regression. A small number of exact observations of
f are made, along with a larger number of observations of the noise-corrupted process y, a
number of which are biased by some amount b. SEKenrel is the exponentiated quadratic
covariance function with unit variance and length-scale. WhiteKernel is the white noise
kernel given by κ(x, x′) := σ2 I(x = x′). GPs are assumed to be zero-mean if no mean
function is provided. Top: code specification of the generative model. Bottom: posterior
distribution over f (blue), y (orange), and b (black). Shaded regions are µ± 3σ under the
posterior. Thin lines are samples from the posterior over f , bold line is posterior mean. Blue
dots are observations of f , orange dots are observations of y, and black dots yb. The thick
black line is the posterior mean of b, and the shaded region around it is the ±3σ central
credible interval.

24 The Gaussian Process Probabilistic Programme

the literature. I provide a collection of simple case-studies involving generic models which
are representative of general classes of model where the new software could be usefully
deployed. Most real-world problems are much messier than the ones presented here, and
those typically found in machine learning benchmark problems – covariates, multiple outputs
with dependent non-Gaussian measurement error, mixtures of gridded and ungridded data,
non-stationarity, and ubiquitous missing data abound in real problems. These case studies are
therefore somewhat contrived, as this makes it easy to control which problems are present,
and therefore to demonstrate how they are handled by the present work.

The extent of the effort involved in implementing software which utilises this abstraction is
determined by a few considerations. One is the simplicity of the concepts and algorithms
needed, another that of their implementation. Perhaps the definitive consideration though,
is the extent to which what is developed here can interoperate with existing techniques for
approximate inference, learning, and analysis, both in principle and in practice – it would
be quite problematic if it were the case that all existing approximate inference algorithms
needed to be re-derived, or completely new techniques developed. Fortunately, this is not the
case. I make strong claims to this end, which will be clear in principle once the abstraction is
established, and are further backed up by concrete examples.

One method of assessing the utility of an abstraction that I have intentionally chosen not
to pursue is the counting of lines of code. While it is easy to count the number of lines of
code that two implementations of the same functionality use, it is hard to use this number
to say anything useful. For one, fair comparisons between two different pieces of code are
hard to construct. Different programming languages and style guides will substantially effect
the length of a piece of code, making comparing between code one person has written and
another difficult. Even when comparing two pieces of code that a single author has written,
in which the same coding style is used, the length of a piece of code is at best an indirect
measure of important properties of code, such as the ease with which it can be understood,
tested, maintained, and its correctness reasoned about. At worst, it is inversely related to
these properties: it is quite easy to write brief code which is utterly impenetrable.3 Instead,
as alluded to above, I show how an implementation of the new abstraction produces readable
code in numerous situations, that succinctly expresses the assumptions present in the model.

Intended Audience It is vital to consider the intended audience of the abstractions dis-
cussed in this chapter when assessing their utility. To do so, consider three individuals who
might potentially be interested in GPs:

3Even to its author! Anyone who has written code is familiar with this experience.

2.2 The GPPP 25

• A data scientist who is interested in performing some quick analysis, and really wants
access to the fit-predict style of interface that you might find in Scikit-learn (Pedregosa
et al., 2011).

• A scientist who is willing to spend a bit of time exploiting the types of assumptions
that GPs let them make about a given problem, knows what the log marginal likelihood
is, and has enough knowledge to apply standard off-the-shelf tools for gradient-based
optimisation and parameter handling.

• A scientist working on GP methodology, for example developing new types of GPs for
particular problems, exploiting structure to enable scalable inference in some important
setting, or approximate inference methods for hierarchical models in which a GP forms
a single component.

It is the latter two individuals that I anticipate benefiting from what is developed in this
chapter. While the first individual might benefit from a fit-predict interface built on top of
this work, they are unlikely to benefit from its direct use.4 For example, the extended noisy
regression example above is something that the second individual might be interested in
utilising.

2.1.2 Collaborators

Work in this chapter related to Gaussian Process Probabilistic Programmes was conducted in
collaboration with Wessel Bruinsma. Although I do not consider it a core contribution of
this chapter, I note that the Julia Gaussian Processes ecosystem is joint work with multiple
collaborators: Théo Galy-Fajou, ST John, David Widmann, Ross Viljoen, Tom Wright,
Sharan Yalburgi, and Hong Ge.

2.2 The GPPP

All of the transformations discussed so far are affine. Thus, abstracting away the details of
the specific affine transformations used in the examples provided previously, a Gaussian

4At the time of writing, the Julia Gaussian Processes community is actively developing such an interface.

26 The Gaussian Process Probabilistic Programme

process probabilistic programme (GPPP) has the following form:

f1 ∼ GP(m1, κ1)

f2 ∼ GP(m2, κ2)

f3 = A1(f1)

f4 = A2(f2, f3) (2.7)

It comprises exactly two kinds of expressions:

• f ∼ GP(m,κ) defines a new atomic GP, and should be read as “f is distributed
according to a Gaussian process distributed with mean m and kernel κ”. The first two
lines above are such expressions.

• f ′ = A(f1, f2, ..., fP) defines a new derived GP, and should be read as “f ′ is an affine
transformation of f1, f2, ..., fP ”. The last two lines above are such expressions. In
general, a derived GP can depend on any GPs declared in the previous lines of the
programme, but will often only depend on a subset of them.

A transformation A, mapping from one vector space V to anotherW , is affine if it can be
written as the composition of a linear transformation L : V → W and a translation:

Af = Lf + b, f ∈ V , b ∈ W . (2.8)

Recall that L is called linear if

L(f + f ′) = Lf + Lf ′, and α(Lf) = L(αf), α ∈ R, f, f ′ ∈ V . (2.9)

V andW are the vector spaces in which samples from GPs live. For example, V will always
be the vector space of functions mapping some domain X to R.

Wherever Af is written, if f is a function sampled from a GP, then Af is the affine transfor-
mation of that sample. Conversely, if f is a GP (i.e., a distribution over such functions), then
Af denotes the GP induced by transforming the GP using A. Which one is being referred to
will be clear from context.

I refer to the collection of all atomic and derived GPs in a given programme as its components.
Atomic GPs are the basic building-blocks of a programme, while derived GPs enable the
composition of atomic and derived GPs to construct more complicated processes. This
is analogous to the manner in which simple kernels, such as the exponentiated quadratic,
are composed via addition and multiplication operations in a kernel-centric framework

2.2 The GPPP 27

to construct complicated processes. These expressions may appear in any order, with the
obvious exception that the first must specify an atomic GP. They are strictly ordered according
to the order in which they are specified, and a derived GP may only depend on previously
specified GPs.

Multi-Process Perspective I call the manner in which GPPPs have been described thus
far the multi-process perspective on GPPPs, in which they are treated as a collection of GPs
and affine transformations thereof.

2.2.1 The Single-Process Perspective

While the multi-process perspective is perhaps the most intuitive perspective on a GPPP, it
can also be treated as a single GP. This single-process perspective is central in the derivation
the mathematical tools required to perform exact and approximate inference in GPPPs, and
to the design of composable software.

In particular, let f be a GPPP comprising component processes f1, ..., fP , with domains
X1, ...,XP respectively. Let its domain X be

X := ∪Pp=1 {p} × Xp (2.10)

where × is the Cartesian product. That is, an element in the domain of f is a 2-tuple (p, x).
p is an index which specifies which component of f the input corresponds to, while x picks
out a particular element of that component.

For example, the domain of the example programme Eq. (2.7) is

X = {(1, x) : x ∈ X1}∪{(2, x) : x ∈ X2}∪{(3, x) : x ∈ X3}∪{(4, x) : x ∈ X4}, (2.11)

where X1 and X2 are determined by m1, κ1 and m2, κ2 respectively, and X3 and X4 by A1

and A2 respectively. An input (3, x) would return f3(x). More generally, f((p, x)) = fp(x).
Notation like this is used regularly – the elements of the 2-tuple are given names on the left-
hand side of =, and these names used inside the definition of the function on the right-hand
side of =. This is generally more convenient than writing expressions of the following form:
let z := (p, x), then f(z) = fz1(z2), where z1 = p and z2 = x.

If fp is an atomic process, then Xp is assumed known. Conversely, if fp is derived through
an affine transformation Ap of f1, ..., fp−1, then its domain is specified by Ap – examples of
this will be presented in the subsequent sections.

28 The Gaussian Process Probabilistic Programme

Given this perspective, it just remains to find the mean and kernel of f , m : X → R and
κ : X ×X → R. These are specified inductively as follows, by considering a finite sequence
of programmes of increasing length.

Base Case

A single-component GPPP f must clearly comprise only a single atomic process f1 with
known mean m1 and kernel κ1. The mean and kernel of f are therefore just m((p, x)) =

mp(x) and κ((p, x), (p′, x′)) = κp(x, x
′) respectively.

Induction Step

Given a (P − 1)-component GPPP f with known mean m and kernel κ, we construct a new
P -component programme f ′ through the introduction of a new component GP fP , which
may be either atomic or derived, and appending this to the collection component processes
f1, ..., fP−1 of f . If fP is atomic with mean mP and kernel κP , then the mean and kernel of
f ′ are

m′((p, x)) =

m((p, x)) if p < P,

mP (x) if p = P,
(2.12)

and

κ′((p, x), (p′, x′)) =

κ((p, x), (p′, x′)) if p, p′ < P,

κP (x, x
′) if p = p′ = P,

0 otherwise.

(2.13)

This can be related to the multi-process perspective by considering the matrix of kernels and
cross-kernels given by κpq(x, x

′) = κ′((p, x), (q, x′)):

κ1 κ12 . . . κ1(P−1) 0

κ21 κ2
.

... . . . κ(P−2)(P−1)

κ(P−1)(P−2) κP−1 0

0 . . . 0 κP

where 0 indicates the binary function with an appropriately-defined domain that returns
zero everywhere. In addition to providing the collection of kernels and cross-kernels for the
multi-process perspective, this view makes it quite clear how adding a new atomic component
process affects the kernel of f ′; it adds a non-zero function on the last element of the diagonal,

2.2 The GPPP 29

and zero functions everywhere else in the final row and column. A similar description exists
for m′.

If the new component process fP is instead derived through an affine transformA, fP := Af ,
and A : V → W is of the form

Af = Lf + b, (2.14)

for linear L : V → W and b ∈ W , then the mean function m′ of f ′ is

m′((p, x)) =

m((p, x)) if p < P,

E[(Af)(x)] if p = P.
(2.15)

Let δ := f −m, then the kernel κ′ is

κ′((p, x), (p′, x′)) =

κ((p, x), (p′, x′)) if p, p′ < P,

E[(Lδ)(x)δ((p′, x′))] if p = P, p′ < P,

E[δ((p, x)) (Lδ)(x′)] if p < P, p′ = P,

E[(Lδ)(x)(Lδ)(x′)] if p = p′ = P.

(2.16)

Each of the expectations in m′ and κ′ are functions of A, m, and κ, quantities that are
known by assumption. Some concrete examples are provided shortly. As before, by defining
κpq(x, x

′) := κ′((p, x), (q, x′)), we can construct a matrix of kernels and cross-kernels:

κ1 κ12 . . . κ1(P−1) κ1P

κ21 κ2
.

... . . . κ(P−2)(P−1)

κ(P−1)(P−2) κ(P−1) κ(P−1)P

κ(P)1 . . . κP (P−1) κP

This now constitutes a complete methodology for inductively determining the mean and
kernel of a GPPP. It provides a precise specification for the functionality which must be
implemented to make any particular affine transformation available within this framework,
the transformation-specific quantities in Eq. (2.15) and Eq. (2.16):

m′((P, x)) :=E[(Af)(x)] (2.17)

κ′((p, x), (P, x′)) :=E[δ((p, x)) (Lδ)(x′)] (2.18)

κ′((P, x), (P, x′)) :=E[(Lδ)(x)(Lδ)(x′)] . (2.19)

30 The Gaussian Process Probabilistic Programme

Note that only three of the four expectations must be specified due to symmetry:

E[δ((p, x)) (Lδ)(x′)] = E[(Lδ)(x′)δ((p, x))] .

With this in hand, I present concrete examples of a few common affine transformations.

2.3 An Extensible Library of Affine Transformations

There are a number of affine transformations which are utilised in just about every GP used in
practice in some form or another. Implementing these within a GPPP framework enables the
implementation of all the examples shown in this chapter. This is not an exhaustive collection
though – in just the same way that a user can add a new kernel to many existing GP libraries,
one can add a new affine transformation to the library by following the steps used to derive
each of the transformations presented here.

Each derivation follows the same structure. It starts with a GPPP f , comprising P − 1

component processes, f1, ..., fP−1, with mean function m and kernel κ. It proceeds to
determine the mean function m′ and kernel κ′ of the GP f ′ induced by applying A to f to
produce fP , and appending it to f1, ..., fP−1 to form f ′. This reduces to finding expressions
for Eq. (2.17), Eq. (2.18), and Eq. (2.19). δ and X are defined as above, and p < P .

This same procedure applies to any affine transformation that one wishes to make available
for use in a GPPP.

Multiplication of GPs by known constants and functions

The multiplication of a GP by a constant is used in almost every model to change the variance
of the process. This is a special case of a more general operation: scaling by a known
function. This is a linear transformation of the form

fP (x) := α(x)fq(x) (2.20)

for some q ∈ {1, ..., P − 1}, and α : Xq → R. From this single-process perspective, this is

(Lf)(x) := α(x)f((q, x)). (2.21)

2.3 An Extensible Library of Affine Transformations 31

Simple manipulations yield the transformation-specific quantities:

m′((P, x)) :=α(x)m((q, x)) ,

κ′((p, x), (P, x′)) :=κ((p, x), (q, x′))α(x′),

κ′((P, x), (P, x′)) :=α(x)κ((q, x), (q, x′))α(x′).

This transformation can be used to construct heteroscedastic GPs, and to perform Bayesian
linear regression with input-dependent weights (O’Hagan, 1978).

Translation

The addition of a known function to the qth process in a GPPP constitutes an affine transfor-
mation of the GPPP:

(Af)(x) := f((q, x)) + b (x), b : Xq → R.

The transformation-specific quantities are

m′((P, x)) :=m((q, x)) + b (x)

κ′((p, x), (P, x′)) :=κ((p, x), (q, x′))

κ′((P, x), (P, x′)) :=κ((q, x), (q, x′)) .

Domain Transformation

It is well known that one may apply a transformation g to the input of a kernel κ : X ×
X → R and produce another valid kernel (MacKay, 1998). In other words, κ′(x, x′) :=

κ(g(x) , g(x′)) is a kernel provided that κ is a kernel. g may be arbitrary beyond the obvious
technical requirement that its range be a subset of X . The use of this transformation is
ubiquitous throughout the GP literature, simple examples include linear transformations
whereby a kernel which depends upon its inputs through r2(x, x′) = (x− x′)TA(x− x′) can
be re-written in terms of a linear input transform g(x) = Px where A = P TP and a kernel
which depends only upon the Euclidean distance between its inputs (e.g. see (Rasmussen
and Williams, 2006) or Snelson and Ghahramani (2012)), while more complicated examples
include highly non-linear transformations such as those proposed by Calandra et al. (2016)
and Wilson et al. (2016) in which g is a neural network.

32 The Gaussian Process Probabilistic Programme

This can in fact be seen as a linear transformation. Taking the single-process perspective,
this transformation is

(Lf)(x) = f((q, g(x))) ,

for q ∈ {1, ..., P − 1}. A brief derivation reveals this to be linear in f as required:

L(f + ḟ)(x) = (f + ḟ)((q, g(x)))

= f((q, g(x))) + ḟ((q, g(x)))

= (Lf)(x) + (Lḟ)(x).

The transformation-specific quantities are

m′((P, x)) :=m((p, g(x))) ,

κ′((p, x), (P, x′)) :=κ((p, x), (q, g(x′))) ,

κ′((P, x), (P, x′)) :=κ((q, g(x)), (q, g(x′))) .

An extremely simple example of this type of transformation is a GP with zero mean and
kernel

κ(x, x′) := σ2 exp
(
− (x− x′)

2
/2α2

)
,

i.e., the exponentiated quadratic with variance σ2 and length-scale α. We can specify this
process as shown in the listing in Fig. 2.4, and inspect both its posterior, and that of the
“standardised” unit-variance and unit-length scale process from which it is derived. The intent
of this example is to highlight the existence of this interpretation of this standard model, and
to show how straightforward it is to analyse this type of model using a GPPP.

Addition of Pairs of GPs

The sum of a pair of Gaussian processes is itself another Gaussian process. From the
multi-processes perspective, the (binary) addition operation yields the sum of the qth and rth

processes
fP := fq + fr.

From the single-process perspective, it is the following linear transformation of f :

(Lf)(x) = f((q, x)) + f((r, x)).

2.3 An Extensible Library of Affine Transformations 33

f

-2

0

2

4

x
-4 -2 0 2 4

Af

-4

-2

0

2

4

f = @gppp let
f = GP(SEKernel())
Af = (f ∘ x->x / α)

end

Fig. 2.4 A very simple example of the affine transform interpretation of an input transfor-
mation. Left: listing specifying generative model. We specify a latent process f , and make
observations of a noisy-version of Af , to which a simple input transformation is applied.
f ◦ (x->x / α) is the composition of f and the anonymous function which computes its input
divided by α. Parentheses are unnecessary, and are included only for clarity. Right: Posterior
of f (top) and Af (bottom) given observations of y (red dots).

It is defined provided that Xq = Xr. The expectation term in the mean function of f ′ is

m((P, x)) :=E[(Af)(x)]
=E[f((q, x)) + f((r, x))]

=E[f((q, x))] + E[f((r, x))]

=m((q, x)) +m((r, x)) .

Similar derivations yield the results for the other transformation-specific quantities:

κ′((p, x), (P, x′)) :=E[δ((p, x)) (Lδ)(x′)]

=κ((p, x), (q, x′)) + κ((p, x), (r, x′)) ,

κ′((P, x), (P, x′)) :=E[(Lδ)(x)(Lδ)(x′)]

=κ((r, x), (r, x′)) + κ((q, x), (q, x′))+

κ((r, x), (q, x′)) + κ((q, x), (q, x′)) .

34 The Gaussian Process Probabilistic Programme

Summation of Many GPs The above straightforwardly generalises to sums of a col-
lection of R component processes, with indices q1, q2, ..., qR < P . The corresponding
transformation-specific quantities are

m′((P, x)) =
R∑

r=1

m((qr, x)) ,

κ′((p, x), (P, x′)) =
R∑

r=1

κ((p, x), (qr, x
′)) ,

κ′((P, x), (P, x′)) =
R∑

r=1

R∑
s=1

κ((qr, x), (qs, x
′)) .

A common special case of these transformations is that in which each component GP in
the summation is independent and atomic. In this case the κ((p, x), (p′, x′)) = 0 whenever
p ̸= p′ or p /∈ {q1, ..., qR}, meaning that the terms in κ′ become

κ′((p, x), (P, x′)) = 1[p ∈ {q1, ..., qR}]κ((p, x), (p, x))

κ′((P, x), (P, x′)) =
R∑

r=1

κ((qr, x), (qr, x
′))

respectively. Examples of GPs involving this transformation abound: the usual nonlinear
regression under noise model in the listing of Fig. 2.1 is the addition of two independent GPs,
and each of the other models in Fig. 2.2 and Fig. 2.3 also use this transformation.

Additive GPs Additive GPs (Duvenaud et al., 2011) can be seen as a composition of this
transformation and a domain transformation. Specifically

Lf :=
D∑

d=1

f((d, φd(x))), φd(x) := xd.

φd returns the dth element of the D-dimensional input x. The additive GP model is quite
restrictive. Gilboa et al. (2013) generalise it to arbitrary linear projections of the inputs, in
which φm(x) := x⊤wm, wm ∈ R, m ∈ {1, ...,M}, lifting some of the restrictions.

Derivatives and Antiderivatives

Differentiation is linear. Here I discuss its use in a GPPP, in particular the use of directional
derivatives.

2.3 An Extensible Library of Affine Transformations 35

Directional Derivatives Denote by Dv the directional-derivative operator in the direction
v ∈ RD. When applied to a function g : RD → R it produces another function Dv g : RD →
R, given by

(Dv g)(x) := lim
h→0

g(x+ hv)− g(x)

h
.

Furthermore, letting κ : RD × RD → R be a binary function, Dv κ : RD × RD → R
denotes the directional derivative operator applied only to the first argument, while κD⊤

v :

RD × RD → R denotes the operator applied to the second argument:

(Dv κ)(x, x
′) := lim

h→0

κ(x+ hv, x′)− κ(x, x′)

h
,

(κD⊤
v)(x, x

′) := lim
h→0

κ(x, x′ + hv)− κ(x, x′)

h
.

Assume that Dv (κD⊤
v) = (Dv κ)D⊤

v , meaning Dv κD⊤
v can be written without ambiguity.5

Directional Derivative of a GPPP It is particularly helpful here to use the notation asso-
ciated with the multi-process perspective, specifically

fp(x) := f((p, x)),

mp(x) :=m((p, x)),

κpq(x, x
′) :=κ((p, x), (q, x′)).

In this notation, the directional derivative Dv of the qth process of f is denoted Dv fq. The
transformation-specific quantities are

m′((P, x)) = (Dv mq)(x)

κ′((p, x), (P, x′)) = (κpq D⊤
v)(x, x

′)

κ′((P, x), (P, x′)) = (Dv κpq D⊤
v)(x, x

′).

Therefore, given programmes which compute mp, κp, and κpp′ , Automatic Differentiation
(Baydin et al. (2017) provide a recent introduction and review) can be employed to compute
m′, κ′. An important use case for GP derivatives is in Bayesian Optimisation (Osborne
et al., 2009; Wu et al., 2017a,b), where observations of both the objective function and its
gradient are often available. In Stheno.jlwe have implemented the operations required
to construct the derivative of a GP using the ForwardDiff.jl library of Revels et al. (2016).

5Schwarz’s theorem states that this assumption holds at any point where the second partial derivatives of κ
are continuous.

36 The Gaussian Process Probabilistic Programme

Antiderivatives The derivative GP can also be used to model the integral of a function
g : R→ R. Consider a function g and its integral G given by

G(x′) :=

∫ x′

a

g(x) dx

where x, x′, a ∈ R. By the fundamental theorem of calculus

d

dx
G(x) = g(x) .

By placing a prior directly over G one can model the integral of g over whatever range one
requires by conditioning on observations of g and G(a) = 0. This is a useful technique since
if one places a GP prior over g, to be able to work with its integral it is necessary to compute
the integral of the mean and kernel of g, which is only analytically tractable for a handful of
kernels. Moreover it yields a much simpler implementation than hand-coding the required
integrals, all required computations can be handled using Automatic Differentiation. That
this approach can be taken was noted by Wessel Bruinsma, and utilised by Bunker and Turner
(2019).

Fig. 2.5 shows how the models described above can be constructed using Stheno.jl .
A smooth prior is placed over f , and its derivative process constructed using the unary ∇
operator, which returns the derivative GP of its argument. This model is first used to infer a
function and its derivative using observations of both placed at randomly chosen locations.
The model on the right hand side of Fig. 2.5 is quite similar to that on the left, but uses
the technique described above to infer the integral of f using observations of both f and
its derivative process. The point that this pair of examples highlights is just how cleanly
the differentiation of processes can be implemented withing a GPPP from the modeller’s
perspective.

Integral Transformations

As alluded to in the introduction of this chapter, in principle integral transformations are also
possible to utilise inside a GPPP. For example, convolutions of the form

(Lφf)(x) :=

∫
φ(y) fq(x− y) dy

2.3 An Extensible Library of Affine Transformations 37

x
-4 -2 0 2 4

-2

-1

0

1

2

x
-4 -2 0 2 4

f = @gppp let
f = GP(SEKernel())
df = derivative(f)

end

f = @gppp let
F = GP(SEKernel())
f = derivative(F)

end

f df f F

Fig. 2.5 GPPP models for the derivative and antiderivative of a function. The model specified
in the top left places a smooth prior over a function f and its derivative process df . The right
hand side is the same model, but is interpreted differently. Thick lines are posterior means,
filled regions are posterior means ±3σ under the posterior, thin lines are posterior samples,
and dots are observations.

38 The Gaussian Process Probabilistic Programme

x
-3 0 3

-2.5

0.0

2.5 @gppp let
f = GP(Matern52Kernel())
g = convolve(f)

end

f g

Fig. 2.6 Convolution of f with φ(x) := exp(x−2) to produce g. Left: posterior over f and g
given observations of both. Dots are observations of the correpsonding component of the
GPPP. Top left: code to specify this GPPP.

can be incorporated, and produce the following transformation-specific quantities:

m′((P, x)) =

∫
φ(y)mq(x− y) dy,

κ′((p, x), (P, x′)) =

∫
κpq(x, x

′ − y′)φ(y′) dy′,

κ′((P, x), (P, x′)) =

∫
φ(y)κpq(x− y, x′ − y′)φ(y′) dy dy′.

The only difficulty with integral transformations in the context of GPPPs is precisely the same
difficulty found in prior work: computing the above integrals requires approximation in all
but a handful of cases. This does not pose too much of a problem in one or two dimensions,
where quadrature or cubature works reasonably well, but of course becomes troublesome
in higher dimensions. For the sake of the example shown in Fig. 2.6, a simple operation
convolve was implemented, which utilises Gauss-Hermite quadrature to approximate
convolving a process with φ(x) := exp(x−2). Implementing greater coverage of the possible
integral transformations, including special cases where integrals are tractable, would be a
valuable endeavour.

2.3 An Extensible Library of Affine Transformations 39

2.3.1 Some Curiosities

Thus far I have discussed affine transformations with clear practical utility. This section
catalogues some affine transformations that are interesting, but for which I have failed to
find great practical utility. I believe it is worthwhile to note their existence because it is
straightforward to conceive of use cases for each of them.

Indexing

Denote by δx the indexing transformation, parametrised by a vector of inputs x ∈ XN –
when applied to a GP f it returns the (finite) N -dimensional GP whose domain is {1, ..., N},
and whose nth dimension is simply f(xn). This transformation is linear, since

δx(α1f1 + α2f2)(n) = (α1f1 + α2f2)(xn)

= α1f1(xn) + α2f2(xn)

= α1(δxf1)(n) + α2(δxf2)(n).

Let δx be applied to the qth process in a GPPP, then the transformation-specific quantities are

m′((P, n)) = m((q, xn)) ,

κ′((p, x), (P, n′)) = κ((p, x), (q, xx′)) ,

κ′((P, n), (P, n′)) = κ((q, xn), (q, xn′)) .

This transformation would be very useful in the absence of the AbstractGPs.jl interface
– this transformation allows one to pull out a finite-dimensional object from an infinite-
dimensional one, and is as simple as it is due to the marginalisation property of GPs.
However, because the AbstractGPs.jl interface itself includes an indexing operation,
this one is largely redundant in the particular implementation presented here. If one were
to implement a GPPP in a different context, where it is required to implement an interface
which does not include finite-dimensional projection, it might be very useful.

Inference

Inference can also be written as a simple affine transformation: consider conditioning the
component process fq on observations y ∈ RN of another component process fr at x ∈ XN .
The affine transformation

A(fq, fr)(x) := fq(x) + κqr(x,x)C
−1
f (y − f), fn := fr(xn) ,

40 The Gaussian Process Probabilistic Programme

where κqr(x,x) ∈ R1×N is vector of covariances between fq(x) and f , produces a new
component process which is the posterior over fq. This can be verified by considering the
transformation-specific quantities. Let mn := m((r, xn)), then

m′((P, x)) = mq(x) + κqr(x,x)C
−1
f (y −m),

κ′((p, x), (P, x′)) = κpq(x, x
′)− κpr(x,x)C

−1
f κrq(x, x

′) ,

κ′((P, x), (P, x′)) = κq(x)− κqr(x,x)C
−1
f κrq(x, x

′) .

Observe that the mean function and kernel κ′((P, x), (P, x′)) are the standard posterior mean
function and kernel.

This transformation is known as Matheron’s Rule. While Hoffman and Ribak (1991) discuss
this transformation in the context purely of producing samples from a Gaussian process, and
Doucet (2010) elucidates the use of their procedure to sample from a variety of Gaussian
systems, none make the important conceptual step of identifying the operation as an affine
transformation, indistinct from any other discussed in this work other than in its fundamentally
important probabilistic interpretation as computing a posterior process. Wilson et al. (2020,
2021) have recently utilised this trick in order to generate approximate samples from a
posterior GP, by forming a finite-dimensional approximation to the prior.

In early implementations of Stheno.jl this transformation was utilised to perform infer-
ence. While superficially appealing, this approached turned out to have some problems in
practice. The first is redundancy. The AbstractGPs.jl interface contains a posterior
function, which works perfectly well for GPPPs via the single process perspective, and it
is hard to imagine any kernel-centric framework that would not need to have similar func-
tionality. While this inference transformation does provide a superset of the functionality
offered by the posterior function, it is unclear what utility this provides. For example,
this transformation would allow one to construct a programme in which observations are
made of both a process and its posterior. Probably the most important issue pertains to
composability – if a GPPP has its own bespoke way to perform exact inference which differs
from the framework that it is built on top of, it will be hard to recycle existing functionality
not designed with GPPPs specifically in mind.

A related transformation can be utilised to perform approximate inference with pseudo-points
by replacing the fixed vector of observations y with a random variable û ∼ q(u), and x with
z.

2.3 An Extensible Library of Affine Transformations 41

Multiplying Kernels

It is well understood that the product of two kernels κp(x, x
′) = κq(x, x

′)κr(x, x
′) is itself a

kernel. It is not, however, the case that the product of two GPs fq and fr is another GP fp.
This begs the question as to whether or not there is an interpretation of the product of two
kernels in terms of an affine transformation of a GP. It turns out that such an interpretation
exists, although its practical utility is unclear. Assume that κr admits the eigendecomposition

κr(x, x
′) =

∞∑
n=0

λnφn(x)φn(x
′) ,

for 0 < λ1 ≤ λ2 ≤ ... and eigenfunctions {φ1, φ2, ...}. Given the sequence of i.i.d. GPs{
f
(n)
q ∼ GP(0, κq)

}∞

n=0
, it is the case that

f(x) =
∞∑
n=0

√
λnφn(x) f

(n)
q (x) ∼ GP(0, κp) .

That f has zero mean is almost immediate:

m(x) = E[f(x)] =
∞∑
n=1

√
λnφn(x)E

[
f (n)
q (x)

]︸ ︷︷ ︸
=0

= 0.

That the kernel of f is the product of κr and κq follows quickly:

κ(x, x′) = E[f(x) f(x′)]

=
∞∑
n=1

∞∑
n′=1

√
λnλn′φn(x)φn′(x′)E

[
f (n)
q (x) f (n′)

q (x′)
]

=
∞∑
n=1

λnφn(x)φn(x
′)E

[
f (n)
q (x) f (n)

q (x′)
]︸ ︷︷ ︸

=κq(x,x′)

+
∞∑
n=1

∑
n′ ̸=n

√
λnλn′φn(x)φn′(x′)E

[
f (n)
q (x) f (n′)

q (x′)
]

︸ ︷︷ ︸
=0

= κq(x, x
′)

∞∑
n=1

λnφn(x)φn(x
′)

= κq(x, x
′)κr(x, x

′) .

42 The Gaussian Process Probabilistic Programme

Similar calculations show that the covariance between f(x) and f
(n)
q is

E
[
f(x)f (n)

q (x′)
]
= λnφn(x)κq(x, x

′).

To summarise, we have shown that the product of two kernels can be understood in terms of
the limit of the weighted sum of a large number of i.i.d. GPs with one of the kernels, where
the weights are determined by the eigenvalues and eigenfunctions of the other kernel. While
interesting, the utility of this interpretation is unclear, since it involves infinitely many GPs
and requires that the eigendecomposition of κr be available, which is only the case for a
limited number of kernels.

2.4 Practical Considerations

This section addresses various important practical aspects of an implementation of the GPPP
abstraction.

2.4.1 The Primary AbstractGPs.jl Interface

The Julia Gaussian Processes organisation has developed a set of interfaces which specify
what functionality it is expected that different kinds of GPs should provide. Functionality
for exact inference, sparse approximations, and approximate inference under non-Gaussian
likelihoods is implemented using the functionality this interface requires. Consequently, any
GP which implements one of these interfaces can immediately make use of this functionality –
the GPPP implementation utilised in this chapter is one such example. This section introduces
these interfaces, and explains their design.

This interface is utilised in several places in the ecosystem of software packages that have
been developed, including that on which this chapter is based, so it is necessary to introduce
it here. The interfaces described in this section rely heavily on multiple dispatch. I anticipate
that many readers will not have encountered it before, so an introduction to it is provided in
Chapter A.

This interface is specified at a slightly higher level of abstraction than GP frameworks often
sit. As alluded to, a typical GP framework specifies an interface for kernels, and implements
a GP object in terms of a kernel. The primary AbstractGPs.jl interface does not say
anything in particular about kernels or mean functions, rather it requires that any object

2.4 Practical Considerations 43

fx = f(x, S) # marginal distribution over f at x, plus noise
y = rand(fx) # sample from fx
marginals(fx) # compute vector of marginal distributions of fx
logpdf(fx, y) # compute log marginal probability of y under fx
f_post = posterior(fx, y) # compute posterior over f

Fig. 2.7 An example listing

calling itself a GP must be able to perform certain operations when certain additional data
are provided:

1. compute the log marginal probability of a vector of observations,

2. generate samples at a finite collection of inputs,

3. condition on observations and produce a new GP which represents the posterior
distribution,

4. compute the marginal distribution at a collection of inputs.

It is simplest to demonstrate this through an example; consider Fig. 2.7. In this example
f is something which supports the AbstractGPs.jl interface, x is a vector of inputs,
y a vector of real-valued observations, and S a covariance matrix. The first line of the
listing constructs an object which represents the random variable given by the sum of the
multivariate Gaussian given by f at inputs x and a N (0,S)-distributed noise vector. This
object provides a useful way to specify a finite-dimensional subset of the random variables
in the GP, on which actual computation can be performed.

The subsequent lines provide examples of these operations: sample generation, construction
of the marginals, log marginal probability density computation, and exact posterior inference.
fpost is another object which implements the AbstractGPs.jl interface, meaning that all
of the operations which can be applied to f can be applied to it. This enables the generation
of posterior samples, construction of posterior marginals, computation of posterior predictive
log marginal probability densities, and conditioning on further observations.

The purpose of providing this interface at this level of abstraction is to state what a GP
must be able to do, not how it must do it. For example, while f will often be a data type
which explicitly contains a mean function and kernel, and utilises these to implement the
required operations, this need not be the case. Indeed, fpost is a type containing f itself,

44 The Gaussian Process Probabilistic Programme

and some pieces of data computed from f , x, y, and S, as opposed to a type containing a
posterior-mean function and posterior-kernel, for example.

There are immediate benefits to this design choice. For example, it is easy to achieve greater
computational efficiency by avoiding repeated computations in some important situations.
For example, both the mean vector and covariance matrix of fpost at x∗ are required in order
to implement rand. These two quantities both require the computation of the covariance
matrix between f at x and x∗. If all that one has access to is a mean function and kernel, and
it is not known that they correspond to the mean function and kernel of the same posterior GP,
it is not possible to exploit this shared computation. Conversely, if we know that a particular
GP represents a posterior, we can specialise rand accordingly.

More generally, it frees up the implementer from having to worry about providing a kernel
for a given GP when this is not the most convenient option, instead focusing attention on
what operations it is necessary to implement in order to make it possible to do inference.

However, note that I am not claiming that it is impossible to produce an efficient implementa-
tion of any of the GPs discussed by explicitly implementing a kernel. Indeed, I am entirely
confident that it will always be possible to provide a performant implementation given a
sufficiently powerful type system, as it will always be possible to specialise on your particular
kind of kernel. What I do claim, however, is that it is not always most convenient to provide
an explicit kernel for a given GP, but to implement the important operations directly. This is
the character of the class of GP introduced in this chapter.

Furthermore, is it certainly true that specialisation of the implementations of the functions
in Fig. 2.7 is essential to achieve performance in some situations. For example, there are
scenarios in which computing the mean vector and covariance matrix, and using these to
generate samples of compute log marginal probability densities, is simply the wrong way
to go about things. In those situations, it is essential to exploit the structure in the GPs to
implement these functions efficiently, and it is convenient to do this specialisation at the level
of the GP.

A near-trivial example of this is Bayesian linear regression. The model utilised in
Bayesian linear regression is simply a finite-dimensional GP, so it can implement the
AbstractGPs.jl interface, and be treated like any other GP. Linear-time algorithms
are available for all of the operations listed in Fig. 2.7, so specialisation is required in order to
avoid naïve cubic-time algorithms that are required in general. Chapter 3 pertains to another
class of GPs in which this need for specialisation is paramount.

2.4 Practical Considerations 45

This is, of course, not the only location in which one could specialise implementations to
exploit model structure. Another potential option is through specialised matrix types. For
example, the covariance matrix associated with a Bayesian linear regression at a collection
of inputs will be at most rank D, where D is the input dimension. This information could
be used to provide a lazy matrix type with specialised implementations of the operations
neessary to implement the AbstractGPs.jl interface in a generic way.

I chose not to take this route because specifying the interface at the GP level ensures that the
implementer is free to implement the operations needed to do useful things with their GP
in whichever way is most straightforward. Conversely, it may not always be apparent how
the structure in a particular GP can be expressed through the covariance matrix. The GPs
discussed in Chapter 3 are such an example, in which the algorithms for implementing the
AbstractGPs.jl interface are well understood, but it is not immediately obvious how
they map on to structure in covariance matrices.

2.4.2 The Other Interfaces

A notable exclusion from the above interface is covariance matrix computation. As suggested
above, this is because not all GPs are able to construct one efficiently, but they have algorithms
for implementing the important operations which do not require the use of a covariance
matrix. However, in many cases it is perfectly reasonable to compute the covariance matrix.

This brings us to the Secondary AbstractGPs.jl Interface. This is simply the Primary Interface,
with the addition of a function to compute the covariance matrix, shown in Fig. 2.8.

The point of having these separate interfaces is to guide those who use objects which
implement the interface as to which operations they can rely on being implemented for
any GP – anything in the Primary Interface. Phrased differently, the different interfaces
instruct users to avoid asking for the covariance matrix where possible, and to instead utilise
higher-level functionality. If they are unable to do this, it will simply restrict the kinds of
GPs they can use to those which implement the Secondary Interface.

The final interface is an internal one, which makes it easy for new GP implementers to
provide implementations of the Primary and Secondary interfaces if there is no special
structure to exploit in their particular GP, and the best option available is simply to compute
the covariance matrix directly. The methods in this interface are shown in the bottom half of
Fig. 2.8, where f is again a GP, and x a collection of inputs.

It is this interface that is utilised throughout this chapter.

46 The Gaussian Process Probabilistic Programme

Secondary API
cov(fx) # compute the covariance matrix

Internal Dense Interface
mean(f, x) # mean vector at x
cov(f, x, x′) # cross-covariance matrix between x and x′
var(f, x) # diagonal of cov(f, x, x)

Fig. 2.8 Another example listing

2.4.3 Other Important Implementation Details

Lazy Calculation The previous sections lay out the relationship between all of the pro-
cesses in a GPPP. While a practical implementation of a GPPP could implement them directly,
for example building up a matrix of mean functions / kernels and querying them when needed,
the approach adopted in practice differs in a couple of regards. These differences are purely
practical in nature, and remain faithful to the preceding sections.

In particular, the definition of a GPPPP suggests that a collection of P 2 kernels must be
explicitly constructed for each programme, which suggests that the programmes would need
to be kept short in practice. However, in practice, many fewer than that may be needed
in order to construct any given kernel matrix. Instead, we can set up a recursive kernel
calculation algorithm which only implements the kernels that are needed.

The mean function m : X → R of f is derived in a similar manner. If the pth component
of f is atomic, then its mean function is assumed to be known, whereas if it is derived it is
given by transforming the mean function of the processes from which it is derived:

m((p, x)) :=mp(x), where mp(x) :=

is given : fp is atomic

Ap(m1, ...,mp−1) : otherwise.
(2.22)

2.4 Practical Considerations 47

The kernel κ : X × X → R is slightly more involved:

κ((p, x), (q, x′)) :=κpq(x, x
′) where

κpq(x, x
′) :=

0 : p ̸= q , and both fp and fq are atomic

κp(x, x
′) : p = q and fp is atomic

0 : p > q and fp is atomic

Ap(κ1,q(·, x′), ..., κp−1,q(·, x′)) (x) : p > q and fp is derived

κqp(x
′, x) : p < q

E[fp(x)fp(x′)]−mp(x)mp(x
′) : p = q and fp is derived.

,

(2.23)

where κp is the known covariance function associated with the atomic GP fp.

Batched Calculation Broadly speaking, the code in Stheno.jl just implements the
above functions. The only notable deviation is that functions to compute the mean vector at a
collection of inputs and the covariance matrix between all pairs of inputs in two collections of
inputs are provided, rather than functions to compute the mean at a single point, or covariance
at a single point. This is to conform with the AbstractGPs.jl internal interface – it
requires this for practical performance-related reasons.

Implicit Mean Function and Kernel There are a couple of possible ways in which the
above could be implemented in practice. I focus on covariance computation, but similar
arguments hold for the mean. One approach is to produce a collection of kernel types
which can represent any kernel that a GPPP may require. Another, is to side-step this
step, and directly implement a function which computes the covariance between any two
collections of points in a GP. The approach taken is of no direct consequence to the user,
but substantially reduces the amount of code which must be written in order to achieve the
needed functionality.

To see this, consider the bottom half of Fig. 2.9, which considers what is required in each
approach to compute the quantities demanded for the process resulting from the summation
of two other processes, f and g. The first example shows how the covariance matrix is
computed if the direct approach is adopted. It is necessary only to compute each of the
relevant covariance matrices, and sum them. Contrast that with the indirect approach, for
which it is necessary to provide a (cross-)kernel data structure capable of representing each
of the four kernels needed, and another to represent their summation. More generally, the

48 The Gaussian Process Probabilistic Programme

Direct approach.
cov(f, x)

Indirect approach.
k = kernel(f)
kernel_matrix(k, x)

Addition using direct approach.
cov((::typeof(+), f, g), x) =

cov(f, x) + cov(g, x) + cov(f, g, x) + cov(g, f, x)

Addition using indirect approach.
kernel(::typeof(+), f, g) =

kernel(f) + kernel(g) + kernel(f, g) + kernel(g, f)

Fig. 2.9 Stheno.jl provides functionality to compute the covariance matrix between two
collections of inputs (direct), rather than a standalone data structure that corresponds to
the kernel of the GPPP (indirect). An example involving the summation of two processes
demonstrates the two approaches. The direct approach yields a simpler implementation than
the indirect approach.

indirect approach mandates that a kernel library which is flexible enough to represent the
kernel of any GPPP be maintained alongside the GPPP library. Typically this requires one or
more (cross-)kernels per affine transformation.

Thus the direct approach achieves a reduction in the amount of code which must be written
that is roughly proportional to the size of the affine transformation library. However the
main benefit is the removal of an entire layer of unnecessary abstraction, which reduces the
complexity of the overall implementation for the implementer of the library.

Initial versions of Stheno.jl adopted the indirect approach, but it was dropped in favour
of the direct when their relative merits became apparent.

Numerics Clearly, it is straightforward to produce rank-deficient covariance matrices using
the constructions discussed, which will lead to problems in the computations required for
sampling, inference, and log marginal likelihood computation. However, note also that
these same problems arise in standard GP software frameworks, and there exist a variety of
practical strategies for addressing them. For example, careful documentation which points
out having observations located too close together in a very smooth GP will likely cause
numerical problems, and suggesting that a pseudo-point approximation be applied if this

2.5 A Climatological Example 49

@gppp let

Shared trend process.
f_trend = stretch(GP(SEKernel()), θ.λ_trend)

Specify model for CO2.
f_co2_latent = θ.CO2.σ_latent * f_trend
f_co2_wiggle = θ.CO2.σ_wiggle *

stretch(GP(SEKernel()), θ.CO2.λ_wiggle)
f_co2_period = θ.CO2.σ_period *

GP(SEKernel() ∘ PeriodicTransform(θ.CO2.freq))
f_co2 = f_co2_latent + f_co2_wiggle + f_co2_period +

θ.CO2.σm * GP(ConstantKernel())

Specify model for temperature.
f_T_trend = θ.T.σ_trend * f_trend
f_T_wiggle = θ.T.σ_wiggle * stretch(GP(SEKernel()), θ.T.λ_wiggle)
f_T = f_T_trend + f_T_wiggle + θ.T.σm * GP(ConstantKernel())

end

Fig. 2.10 GPPP to jointly model CO2 concentration and global average temperature.

seems to be a problem in practice. Providing an easy way to perform the standard trick of
adding a small constant to the diagonal of any covariance matrix which needs to be inverted
or whose Cholesky factorisation needs to be computed is a necessity in practice.

2.5 A Climatological Example

In this example we consider a joint model for atmospheric CO2 concentration and tempera-
ture6.

Fig. 2.10 shows the GPPP used to model these two quantities. A shared slowly-varying
f_trend is intended to capture the climate-change related signal present in both signals.
The other components of the model are specific to each of the signals, and are intended to
account for other factors which affect the measured data in different ways.

6CO2 measurements are taken over Mauna Loa, Hawaii, and are due to Dr. Pieter Tans, NOAA/ESRL www.
esrl.noaa.gov/gmd/ccgg/trends/ and Dr. Ralph Keeling, Scripps Institution of Oceanography
scrippsco2.ucsd.edu/. Temperature data is the Met Office Hadley Centre’s monthly global sea-surface
temperature data set, due to Kennedy et al. (2011), and was retrieved from https://www.metoffice.
gov.uk/hadobs/hadsst3/data/download.html. Both of these data sets are subject to occasional
revision by their maintainers.

www.esrl.noaa.gov/gmd/ccgg/trends/
www.esrl.noaa.gov/gmd/ccgg/trends/
scrippsco2.ucsd.edu/
https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html
https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html

50 The Gaussian Process Probabilistic Programme

-1

0

1

2

1960 1970 1980 1990 2000 2010 2020

-2

0

2

4

6

CO2 (latent)

CO2 (wiggle)

CO2 (period)

CO2

T (trend)

T (wiggle)

T

T (test)

Fig. 2.11 CO2 (top) and temperature (bottom) over time, in addition to the decomposition of
the posterior distribution over .

2.6 The Interoperability Offered by Abstraction 51

Type-II maximum likelihood was performed in the hyperparameters. The model does not see
temperature data after 1995 during training. Instead, predictions are made for it using CO2
data from the entire period, and temperature data up to 1995. This general class of prediction
task occurs in practice – the IPCC regularly publish different CO2 scenarios for the coming
years. These are not intended to form predictions for how much CO2 will be emitted, but
rather to characterise how much CO2 will be emitted under certain kinds of policy decisions.

The model seems to do a surprisingly good job of forecasting temperature given actual
CO2 emissions. The marginal predictive variance grows quickly to become quite large,
but this is to be expected, because the year-to-year fluctuations in temperature constitute
quite a large component of the variability of the signal. The important shared information,
however, persists and enables meaningful extrapolation. Visually comparing the prediction
to the temperatures which were actually observed between 1995 and 2022 suggests that the
extrapolation is reasonable.

2.6 The Interoperability Offered by Abstraction

The single-process perspective enables a GPPP to implement the same interface as any other
AbstractGP, so it is possible to utilise all of the functionality designed with that interface in
mind, without any modification whatsoever.

2.6.1 Scalability with Pseudo-Point Approximations

As discussed in Chapter 1, pseudo-point approximations form a core part of the modern use
of GPs in practice, owing to the improved scalability that they offer. It is natural, therefore,
to ask whether pseudo-point approximations can be incorporated into the GPPP abstraction
introduced in this chapter. The answer is yes, and it is entirely trivial to do so.

First, some notation. Let f be a GPPP which distributes over functions mapping from X
to R. As before let X := ∪p∈{1,...,P}{(p, x) : x ∈ Xp}. Let x ∈ XN be a collection of
inputs, y ∈ RN the corresponding outputs, and z ∈ XM a collection of pseudo-inputs.
Crucially, note that the elements of x can reside in any of the process in f , as can those of z.
Denote by f the vector-valued random variable comprising (f(x1), ..., f(xN)), and by u the
vector-valued random variable comprising (f(z1), ..., f(zM)).

Recall that all which is required to utilise pseudo-point approximations is the computation of
a few covariance matrices (Cf , Cfu, and Cu) and mean vectors (mf and mu). This chapter

52 The Gaussian Process Probabilistic Programme

has made it clear how these quantities can be computed, so a generic implementation of a
pseudo-point approximation can immediately be applied to a GPPP.

Below I present a few worked examples designed to illustrate the flexibility that the above
offers in some more detail.

The Trivial Case To recover a standard pseudo-point approximation, suppose that we
have a trivial GPPP comprising only a single process (P = 1), then x be of the form
x = ((1, x1), (1, x2), ..., (1, xN)) where xn ∈ X1, and z = ((1, z1), (1, z2), ..., (1, zM))

where zm ∈ X1. In this case, the elements of x and z live in the same component process of
f , which is what is typically done in practice.

A Sum of Processes However, we can easily go further. If P > 1, there is no particular
reason to place all of the pseudo-inputs in only a single component of the GPPP f . Fig. 2.12
depicts a three-process GPPP, in which the third process is the sum of the first two. In this
example, observations have been made of the first and third component processes of f . This
means that, letting N1 and N3 be the total number of observations made of the first and third
processes respectively, x is of the form

x = ((1, x1), ..., (1, xN1), (3, xN1+1), ..., (3, xN1+N3)),

where xn,∈ [−5, 5] for all n ∈ {1, ..., N}.

We have complete freedom over the choice of location of pseudo-observations – we can
place them in any of the available processes. In this example I chose to put them in the first
and second processes. This means that, letting M1 and M2 be the number of pseudo-inputs
located in the first and second processes respectively, z is of the form

z = ((1, z1), ..., (1, zM1), (2, zM1+1), ..., (2, zM1+M2).

where zm ∈ [−5, 5] for all m ∈ {1, ...,M}.

Inspection of Fig. 2.12 reveals that this choice of pseudo-inputs provides a reasonable
approximation to the exact posterior distribution. Note that had the pseudo-inputs only been
placed in one of the component processes, the approximation quality would have been quite
poor. For example, if all of the pseudo-inputs resided in the third component process of f , the
approximation would necessarily have large uncertainty over the first and second component
processes. This would be okay if the observations had only been made of the third process,

2.6 The Interoperability Offered by Abstraction 53

but because there are also observations available for the first process, the exact posterior has
quite low uncertainty as to the value of the first and second processes.

f 1

-2

0

2

f 2

-2

0

2

x
0 5 10

f 3

-4

-2

0

2

4

exact approximate pseudo-obs mean observation

Fig. 2.12 Exact inference vs pseudo-point approximation to the posterior over a GPPP
comprising the sum of two GPs, f3 := f1+ f +2. A handful of observations are made (black
dots) of f1 and f3. Pseudo-points (purple triangles) are placed in f1 and f2. Exact posterior
marginals (mean ±3 standard deviations) are shown in blue, approximate posterior marginals
in orange.

Inter-Domain Pseudo-Point Approximations In the last example, pseudo-inputs were
only placed in component processes which were already part of the model. The inter-domain
approximations introduced by Lazaro-Gredilla and Figueiras-Vidal (2009), however, place

54 The Gaussian Process Probabilistic Programme

f = @gppp let
f₁ = GP(randn(), SEKernel())
f₂ = GP(SEKernel())
f₃ = f₁ + f₂

end

Specify inputs in f₁ and f₃.
x₁ = GPPPInput(:f₁, rand(10) * 10)
x₃ = GPPPInput(:f₃, rand(11) * 10)
x = vcat(x₁, x₃)

Specify pseudo-inputs in f₁ and f₂.
z_locations = range(0, 10; length=10)
z₁ = GPPPInput(:f₁, z_locations)
z₂ = GPPPInput(:f₂, z_locations)
z = vcat(z₁, z₂)

Construct the approximate posterior.
f_post_approx = posterior(VFE(f(z)), f(x, 1e-2), y)

Fig. 2.13 Listing for Fig. 2.12.

pseudo-inputs in component processes which are constructed through integral transforms of
existing processes.

Matthews et al. (2016) formalise this idea in the context of variational inference by letting
u := Lf , where L : (X → R) → RM is a bounded integral transform. They show that,
as before, q(u) can be chosen arbitrarily provided that q(f |u) = p(f |u), and that the
KL divergence between approximate posterior and exact posterior over f is minimised by
optimising the bound introduced in Chapter 1. This can be achieved with standard pseudo-
point approximations in a GPPP by adding (Lf) be the (P)th process in an existing GPPP
f comprising P − 1 processes, and letting z := [(P, 1), ..., (P,M)], thus provided that the
integral transformations needed for inter-domain transformations are available in the GPPP
framework, inter-domain approximations can be readily employed.

The GPPP abstraction separates the two components of an inter-domain pseudo-point ap-
proximation: the specification of a process which is an integral transformation of existing
processes, and the placement of pseudo-points within that process. For example, once the
convolve transformation discussed in Sec. 2.3 has been implemented, it can be used either
as a model component of which actual observations are made, or as simply an additional
component of the programme in which pseudo-points can be placed. The point is that once
an integral transformation has been specified and implemented within the GPPP abstraction,

2.6 The Interoperability Offered by Abstraction 55

it can immediately be used as either an important part of the model or as somewhere to locate
pseudo-points.

Other Examples in the Literature There is a variety of other examples in the literature:
van der Wilk et al. (2017), Hensman et al. (2017), Adam (2017), and Wilson et al. (2016)
all place pseudo-points in processes other than the one in which they are interested in doing
inference. This works shows that the GPPP provides a unifying abstraction, and a practical
framework, from which they can all be reached.

Pseudo-Points for Additive GPs

The rest of this section considers the class of additive processes introduced by Duvenaud
et al. (2011) as they are especially easy to analyse from our perspective and, as we shall see,
the placement of pseudo-points turns out to be quite important for the design of efficient
approximate inference schemes. Fig. 2.14 presents a very similar situation to that discussed
by Adam (2017). We have placed pseudo-points in f1 and f2 to induce an approximation
to the posterior over f3, and see that we quite accurately recover the posterior marginals
over each latent process f1 and f2, which is in agreement with their results. That such a
good approximation can be achieved with comparatively few pseudo-data is possible due
to the additive structure of the model: the function f3 on R2 is degenerate in the sense that
it can be fully described in terms of two functions on R. However, note that the placement
of the pseudo-points in f1 and f2 rather than f3 is not of crucial importance for the quality
of the approximation. For example, we could have placed Ml = 25 pseudo-points regularly
between (0,−10) and (0, 10) and another Ml = 25 regularly between (−10, 0) and (10, 0),
for a total of M = 50 pseudo-points, and arrived at the same results up to rounding errors.
Moreover we need not tile the axes, but could simply space the points such that they are
parallel to the axes and find little difference in the quality of the results obtained; the point
is that there exist many possible places that one could locate the pseudo-inputs and achieve
the same results, thus the statistical efficiency which enables such high quality approximate
inference is not inherently tied to the process in which the pseudo-points live.

In light of these observations one might reasonably question whether or not there is any
benefit at all to placing pseudo-points in a particular component process of this GPPP
as opposed to some other. The answer is yes, but the benefit is found in computational
efficiencies rather than statistical ones. Consider the largest matrices that must be computed
to perform approximate inference related tasks: Cu, Cfu, and the diagonal of Cff . Cff is
invariant to changes in the pseudo-inputs, but the same is not true for Cu and Cfu.

56 The Gaussian Process Probabilistic Programme

To understand this, consider the computation of Cfu in more depth. In particular consider
the general case of a GPPP comprising D one-dimensional processes f1, ..., fD, where fd

has kernel κd and an associated vector of Ml pseudo-points u(d) with corresponding pseudo-
inputs z(d) ∈ RMl , for a total of M := MlD pseudo-points. The marginal process f , whose
sample paths map RD → R, is

f(x) :=
D∑

d=1

fd(xd) . (2.24)

The cross-covariance matrix is

Cfu =
[
Cfu(1) . . . Cfu(D)

]
where

[Cfu(d)]nm = κd

(
xn, z

(d)
m

)
, m ∈ {1, ...,Ml}.

The total number of operations required to compute Cfu in this situation is O(NMlD).

Contrast this with what happens if all M pseudo-inputs are located in f , and each pseudo-
input is therefore an element of RD. In this case, each element of Cfu requires a sum over all
D dimensions:

[Cfu]nm =
D∑

d=1

κd(xn, zmd) , m ∈ {1, ...,M}.

Consequently, the total number of operations required is O(NMD) = O(NMlD
2), a factor

of D greater than the previous situation.

While the construction of these matrices is dominated asymptotically by the O(M2N) =

O(M2
l D

2N) matrix multiplication CufCfu which is required when computing the evidence
lower bound, in the finite-data regime it is by no means a given that the time and mem-
ory required to compute these matrices is negligible. Fig. 2.15 shows that, at least when
considering small problems, the growth in the time taken to compute the matrices is as
expected and that they comprise a non-negligible amount of the computation undertaken. It
is particularly interesting to note that, at least at this small scale, the multiplication CufCfu

comprises a relatively small amount of the work required to compute the evidence lower
bound. This is not attributable to improved parallelism in this multiplication routine as all
computations were limited to use a single thread. Instead, it is a reflection of the high-quality
implementation of the level-3 BLAS operation invoked to compute the product. The analysis
presented in Fig. 2.15 does not constitute an exhaustive study of the performance of our
implementation of a GPPP, but it does approximately show the expected properties, and

2.6 The Interoperability Offered by Abstraction 57

demonstrate the computational benefits of having the ability to easily place pseudo-inputs in
any component of a given GP model.

f 1

-3

-2

-1

0

1

2

3

f 2

-3

-2

-1

0

1

2

3

x1

-10 -5 0 5 10

x 2

-10

-5

0

5

10

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Fig. 2.14 Approximate inference in the GP f3(x1, x2) :=
1
2
(f1(x1) + f2(x2)) which is the

direct sum of f1 and f2. N = 1000 observations are made of f3 (small black dots), and
M = 50 pseudo-points are used (large black dots). Ml = 25 of these are spaced regularly
over the domain of f1, the other Ml = 25 over the domain of f2. Exact and approximate
posterior quantities are indicated in blue and orange respectively. Exact posterior mean is
indicated by background colour in heatmap.

58 The Gaussian Process Probabilistic Programme

D
5 10 15

T
im

e
R

at
io

0

10

20

30

40

50

60

elbo

cov

cross-cov

Fig. 2.15 Ratio of time taken to compute Cuu, Cuf , and the ELBO when pseudo-inputs are
located in f and f1, ..., fD, as D is varied between 1 and 15, with N = 1000 and Ml = 10
fixed. Standardised EQ kernel is used for all processes. For example, a ratio of 10 indicates
that a computation takes 10 times longer when the pseudo-inputs are located in f than in
f1:D.

2.6.2 Non-Gaussian Observation Models

Just as pseudo-point approximations designed without GPPPs in mind can be utilised to
perform approximate inference in GPPPs, so can approximations designed to perform
approximate inference in GPs with non-Gaussian observation models. For example, let
Exp(λ) denote the exponential distribution with rate λ, and consider the simple two-level
hierarchical model

f ∼ GP(m,κ) ,

yn | f(xn) ∼ Exp(λn), λn := ef(xn), n ∈ {1, ..., N}.

ApproximateGPs.jl and ConjugateComputationVI.jl contain code to perform
approximate inference and learning in the above model using the Laplace approximation
(see e.g. Rasmussen and Williams (2006)) and Conjugate Computation VI (Khan and Lin,
2017) respectively.7 These packages operate at a sufficiently high level of abstraction that

7Code available at https://github.com/JuliaGaussianProcesses/ApproximateGPs.
jl/ and https://github.com/willtebbutt/ConjugateComputationVI.jl.

https://github.com/JuliaGaussianProcesses/ApproximateGPs.jl/
https://github.com/JuliaGaussianProcesses/ApproximateGPs.jl/
https://github.com/willtebbutt/ConjugateComputationVI.jl

2.7 Related Work 59

they are useful for both GP research and use in practice, but are lower-level than a fit-predict
interface.

There is nothing preventing us from replacing f in the above with a GPPP, since they satisfy
the same interface. In this case, Stheno.jl handles all of the jointly-Gaussian components
of the model, while entirely separate code handles the non-Gaussian components. For
example, Fig. 2.16 shows the results of replacing it with the GPPP specified in Fig. 2.13,
and performing inference and learning in the above model using these approximations when
observations are made of both f2 and f3. In this case, both approximations appear to have
produced very similar approximate posteriors.

There are any number of variations on the above obtained by replacing the Exponential
distribution observation model with something else. For example a Bernoulli to perform
binary classification, a Negative Binomial to model count data, or an observation model
which is a function of multiple locations in f . All of these can elegantly utilise GPPPs by
using the single-process perspective.

The point of this example is not that the approximations demonstrated are known to be
especially well-suited to an Exponential observation model, nor is it that this particular
model is necessarily very interesting in and of itself – they were chosen arbitrarily from
those presently available within the JuliaGPs ecosystem, and the model is chosen to be
representative of a broad class of important models, so as to illustrate the following: neither
of the implementations of the approximations needs to know about the existence of GPPPs –
they are designed to work with any GP which implements the AbstractGPs.jl interface,
and the single-process perspective makes it possible to treat a GPPP as a single GP, so
interoperability is seamless. Indeed, one can quite easily verify this fact by checking
that neither ConjugateComputationVI.jl nor ApproximateGPs.jl depend on
Stheno.jl, either directly or indirectly.

2.7 Related Work

As alluded to earlier in this chapter, there are numerous excellent and highly-successful
kernel-centric software packages for working with GPs. Probably the most well-known
of these is GPML (Rasmussen and Nickisch, 2010). Similar libraries include GPy (GPy,
2012), GPflow (Matthews et al., 2017), GaussianProcesses.jl (Fairbrother et al., 2021),
and GPyTorch (Gardner et al., 2018b). Being kernel-centric, they all have the limitations
discussed at the start of the this chapter.

60 The Gaussian Process Probabilistic Programme

x
-4 -2 0 2 4

f

-4

-2

0

x
-4 -2 0 2 4

y

0

2

4

x
-4 -2 0 2 4

f = @gppp let
f1 = f1_σ * stretch(GP(SEKernel()), f1_λ)
f2 = f2_σ * stretch(GP(SEKernel()), f2_λ)
f3 = f1 + f2

end

1

2

3

Fig. 2.16 Approximate posterior obtained using the Laplace and CVI approximations. Top:
GPPP in which approximate inference and learning are performed. Middle: approximate
posterior over each of the latent processes. Bottom: observations of f2 (left) and f3 (right),
and approximate posterior over location-dependent rate. Dashed lines show the approximate
posterior obtained using CVI, while the solid lines and filled regions the approximate posterior
obtained using the Laplace approximation.

2.7 Related Work 61

However, in addition to its relationship with existing GP software, the present work fits
squarely within the field of Probabilistic Programming – indeed it is from this field that
the GPPP derives its name. Over the last decade or so there has been a surge of interest in
Probabilistic Programming, with 2018 seeing the first conference dedicated to the subject,
although work in the area goes back to at least the early 1990s. Its goals concern all aspects
of the creation of software frameworks and programming languages that enable one to write
programmes that specify a probabilistic model, and approximate inference therein.

Broadly speaking, they attempt to exploit one of the core appeals of probabilistic modelling:
the clean divide which exists between modelling and inference. Once a model has been fully
specified, what needs to be computed in order to perform inference is fully specified.

The advantages of achieving this separation are substantial, and impact several aspects of the
modelling process. Firstly, the individual already well-versed in probabilistic modelling and
approximate inference would experience a significant increase in their productivity when
designing a new model, as they could spend their time developing and refining a model
without concern for the technical details of approximate inference. Conversely it has the
potential to both increase the impact of advances in approximate inference techniques, while
simultaneously reducing the time taken for widespread adoption; once an approximate infer-
ence technique has been implemented within a probabilistic programming framework, it is
available to be used by all of those who use the framework. Similarly significant would be the
effect for those whose primary expertise is in some domain other than probabilistic modelling
and inference, for whom the implementation of a probabilistic model and accompanying
approximate inference would be impossible without either a very significant amount of effort
on their part to understand the relevant material, or collaboration with those who already
have the appropriate expertise. They would instead just have to acquire an understanding of
how to the specify an appropriate model for their problem, and then allow the framework to
handle inference for them.

Of course, the problem is that how it is best computed (approximately) is situation-specific,
each different approximation technique possesses different failure modes and demands
different quantities be derived from the model the user specifies in order for it to operate.
Moreover, we do not currently have good ways to automatically choose between different
approximate inference techniques for a given model. Different probabilistic programming
frameworks take different approaches to handling this problem.

In practice, the extent to which inference can be automated depends strongly on the types
of problems that one considers. If a framework can specify any arbitrary programme that
generates data, it will admit arbitrarily hard inference problems that even an expert would

62 The Gaussian Process Probabilistic Programme

not be able to hand-craft a solution for. Languages such as Church (Goodman et al., 2012),
Anglican (Tolpin et al., 2015), Turing.jl (Ge et al., 2018), Gen.jl (Cusumano-Towner et al.,
2019), and Soss.jl (Scherrer and Zhao, 2020) fall into this category. These frameworks must
therefore offer the user a variety of options for performing approximate inference, and ought
to come with some kind of health warning for users. For example, Turing.jl offers the user a
range of high-level choices as to which approximate inference algorithm should be deployed
and tools to diagnose whether they have produced accurate results. However, it shields them
from the technical issues associated with their implementation for a particular model – from
any given model it algorithmically derives a procedure to perform ancestral sampling in it,
and attempts to derive a function to compute the log joint probability density and its gradient.

As more constraints are placed on the types of programmes that a framework can express
inference becomes more straightforward. For example Stan (Carpenter et al., 2017) requires
that programmes be specified such that their log joint probability density is differentiable
w.r.t. the random variables on which inference is to be performed. This means that highly
efficient Hamiltonian Monte Carlo (see Neal et al. (2011) and Betancourt (2017) for reviews),
along with its various extensions / refinements (Girolami and Calderhead, 2011; Hoffman and
Gelman, 2014), and gradient-based black-box variational inference techniques (Kucukelbir
et al., 2015) built on the so-called reparameterisation trick (Kingma and Welling, 2013;
Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014) can always be employed. Earlier
work on probabilistic programming includes the Bayesian inference Using Gibbs Sampling
(BUGS) (Lunn et al., 2009; Thomas et al., 1992) and Just Another Gibbs Sampler (JAGS)
(Plummer et al., 2003) projects, which constrain programmes to those for which Gibbs
samplers can be constructed. Of course, it is still possible to produce programmes within
these frameworks in which approximate inference is highly inaccurate, or takes a very long
time to run.

The GPPP introduced here is an example of a family of highly-constrained probabilistic
programmes. This permits highly accurate inference, which can be more automatic than
that offered by other GPPPs. Most probabilistic programmes assume that they specify the
entire model under consideration, however, it is exceedingly rare for a model to contain
only Gaussian random variables in practice. At the very least, hyperparameters will need
to be inferred. So the role of the GPPP is somewhat different from a typical probabilistic
programme: it handles the tractable Gaussian components of a model and the relationships
between them, and marginalises away infinite-dimensional quantities. In this sense, the GPPP
and more general probabilistic programmes are complementary to one another – one could
embed a GPPP inside a larger probabilistic programme.

2.7 Related Work 63

2.7.1 Multi-Output GPs

One could express a lot of the models discussed above using multi-output GP frameworks.
In particular, consider the climatological example in Sec. 2.5. This example could also be
implemented as a linear mixing model with two outputs and 6 latent processes. Specifically,
a collection of independent latent processes:[

ftrend fCO2-wiggle fCO2-period GP (0, κconst) fT-wiggle GP (0, κconst)
]
, (2.25)

and a mixing matrix [
σCO2-latent 1 1 1 0 0

σT-latent 0 0 0 1 1

]
. (2.26)

A key problem here is interpretability. One has to compare the mixing matrix and the latent
processes in order to understand how the observables are derived, and how to interpret them.
Contrast this with Fig. 2.10, in which each process is named, and it is quite clear how each
of the processes are to be combined and interpreted.

This kind of additive model is just about all that can be expressed with this particular multi-
output GP though, and while multi-output GPs have been devised which mix processes using
more flexible integral linear transformations (for example see Alvarez and Lawrence (2008)),
the above issue surrounding interpretability persists. Moreover, while some authors note
that each output of a multi-output GP need not have the same domain (Alvarez et al., 2011),
in practice I am not aware of any multi-output GP tool which actually achieves this or is
designed with it in mind.

I speculate, however, that it may be the case that a sufficiently flexible multi-output GP
implementation would provide a good compilation target for a GPPP. That is, if one could
automatically translate a GPPP into a flat multi-output GP structure, it might be possible
to exploit a multi-output GP implementation to provide a highly-optimised approach to
inference. I have not pursued work in this direction, but believe it would be interesting to do
so.

2.7.2 Revisiting Kernels

One could straightforwardly utilise a GPPP to derive a kernel, and plug that into a standard
kernel-centric framework for working with GPs. Indeed, this is how I originally approached
the first iteration of this work.

64 The Gaussian Process Probabilistic Programme

However, doing so produces two inconveniences. The first is that deriving a kernel using
this framework does not also derive the mean function. Both would need to be plugged
into a GP object, and failure to do so could yield inconsistent behaviour. The second is
simply that it produces extra code and layers of complexity that are unnecessary – rather than
having a single GPPP, you would have a GP containing a kernel which is defined by a GPPP.
Such additional complexity only has utility if an existing GP framework forces the user to
provide a kernel, thus making the production of a kernel a necessity. If a framework instead
operates at the level of GPs, abstracting away their implementation details, a kernel-based
approach provides only the disadvantage of added complexity – this is the situation in the
Julia Gaussian Processes ecosystem, owing to the AbstractGPs.jl interfaces.

2.8 Conclusion

In this chapter, the need for the GPPP has been provided, its details explained, and its utility
demonstrated. It has been shown to provide an approach to working with GPs which is more
closely tied to the model users actually wish to express, interoperate seamlessly with existing
approaches to approximate inference, and to enable simple models to be expressed by users
in a simple manner. A general approach to its practical implementation has been provided,
which should be transferable to many different programming languages, in addition to a
focus on one particular implementation in the Julia programming language, Stheno.jl .

On-Going Work While the abstractions introduced in this chapter appear to work well,
there remains both algorithmic and practical work to be done. On a practical note, there
are plenty of affine transformation which have yet to be implemented and included within
the framework. For example, only rudimentary integral and differential transformations are
currently available. In the case of differential transformations, this is simply because the
tooling for algorithmic differentiation in Julia has yet to reach a stage of maturity where it is
simple to implement much more, and will be resolved when a greater level of maturity is
reached – for example, a framework implemented using Jax (Bradbury et al., 2018) would not
have this problem as it is able to handle nested differentiation easily. Integral transformations
are somewhat trickier – closed-form solutions are only known in a limited number of cases,
and approximations are infeasible in more than a few dimensions. As with differential
transformations, this is entirely orthogonal to the abstractions introduced in this chapter:
integrals which were hard to compute in a kernel-centric framework remain hard in a GPPP.

Furthermore, there are numerous GPs for which efficient inference algorithms exist that
circumvent the computation of the covariance matrix entirely, such as GPs with Markovian

2.8 Conclusion 65

structure (which are discussed at length in the next chapter) and finite-rank GPs such as
Bayesian linear regression models. No attention has been paid in this chapter to such GPs, but
it would be valuable to determine how best to include them within the framework. Similarly,
the pathwise sampling techniques introduced by Wilson et al. (2021) ought to be simple to
extend to GPPPs.

The Krylov subspace methods discussed by Gibbs and MacKay (1997) and Gardner et al.
(2018b) just rely on having access to the covariance matrix. There is not currently code in
the Julia GPs ecosystem for working with these approaches to approximate inference, but it
would be trivial to utilise them with a GPPP provided that they were implemented in terms
of one of the AbstractGPs.jl interfaces.

Possible algorithmic improvements include the caching of intermediate computations when
computing covariance matrices for multiple components of a GPPP at the same time. This
is likely to be very important in multi-output GPs, where the same covariance matrices are
recycled extensively.

Chapter 3

Combining Pseudo-Point and State
Space Approximations for Sums of
Separable Gaussian Processes

3.1 Introduction

Large spatio-temporal data containing millions or billions of observations arise in various
domains, in particular in climate science. While GP models can be useful models in these
settings, the computational expense of exact inference is typically prohibitive, necessitating
approximation. Pseudo-point approximations alone are typically insufficient due to their
limitations in the context of time-series problems, a discussed in Sec. 1.3.5.

To address this limitation, this chapter combines pseudo-point approximations with state-
space (Särkkä and Solin, 2019; Särkkä et al., 2013) approximations, whose strengths are
almost entirely complementary. Fig. 3.1 shows a single time-slice of a spatio-temporal model
for daily maximum temperature, which extrapolates from fixed weather stations, constructed
using this technique.

This work hinges on a conditional independence property possessed by separable GPs. This
property was identified by O’Hagan (1998), and appears to have gone largely unnoticed within
the GP community. In conjunction with the imposition of some structure on the pseudo-point
locations, this property yields a collection of methods for approximate inference algorithm
which scale linearly in time, the same as standard pseudo-point methods in space, and which
can be implemented straightforwardly by utilising standard Kalman filtering-like algorithms.

68 Combining Pseudo-Point and State Space Approximations

Fig. 3.1 Spatial slice of a large-scale spatio-temporal modelling problem: The posterior mean
belief over max temperature (standardised scale, −3 3) on a day in early 2020 around
Seattle and Vancouver. Pink squares are weather stations, orange dots are pseudo-points.

In particular, it is shown

• how O’Hagan’s conditional independence property can be utilised to significantly
accelerate the variational inference scheme of Titsias (2009) for GPs with separable
and sum-separable kernels without the need for any further approximation,

• how this can be straightforwardly combined with the Markov property utilised by state
space approximations (Särkkä and Solin, 2019) to obtain an accurate approximate
inference algorithm for sum-separable spatio-temporal GPs that scales linearly in time,
and

• how the earlier work of Hartikainen et al. (2011) on this topic, who consider a very
similar setting, is more closely related to the pseudo-point work of Csató and Opper
(2002) and Snelson and Ghahramani (2005) than previously realised.

3.2 Sum-Separable Spatio-Temporal GPs 69

3.2 Sum-Separable Spatio-Temporal GPs

A GP is separable across space and time if its kernel is of the form

κ((r, τ), (r′, τ ′)) = κr(r, r′)κτ (τ, τ ′) (3.1)

where r, r′ ∈ X are spatial inputs and τ, τ ′ ∈ R are temporal inputs. Kernels such as κ are
also referred to as being separable. There is no particular restriction on what X is defined to
be – it could be 3-dimensional Euclidean space in the literal sense, or it could be something
else, such as a graph or the surface of a sphere. Moreover, no restrictions are placed on the
form of κr, in particular it need not be separable. Similarly, while the temporal inputs must
be in R, it is irrelevant whether this dimension actually corresponds to time or to something
else entirely.

This work considers a generalisation of separable GPs that I call sum-separable across
space and time, or simply sum-separable. A GP is sum-separable if it can be sampled
by summing samples from a collection of independent separable GPs. Specifically, let
fp ∼ GP(0, κp), p = {1, ..., P}, be a collection of P independent separable GPs with
kernels κp, and f :=

∑P
p=1 fp, then f is sum-separable. f has kernel

κ((r, τ), (r′, τ ′)) =
∑P

p=1
κp((r, τ), (r

′, τ ′)) , (3.2)

which is not separable, meaning that sum-separable GPs such as f are not generally separable.
In fact they are a much more expressive family of models, as they can represent processes
which vary on multiple length scales in space and time. Note that these are also distinct from
additive GPs (Duvenaud et al., 2011) since each function depends on both space and time.

3.3 State Space Approximations to Sum-Separable Spatio-
Temporal GPs

Many time-series GPs can be augmented with additional latent dimensions in such a way that
the marginal distribution over the original process is unchanged, but with the highly beneficial
property that conditioning on all D dimensions at any point in time renders past and future
time points independent (Särkkä and Solin, 2019). This augmentation is exact for many GPs,
in particular the popular half-integer Matérn family, and a good approximation for others,
such as those with exponentiated-quadratic kernels. Consequently, for any collection of T
points in time, τ1 < τ2 < ... < τT , the augmented GP forms a D-dimensional Gauss-Markov

70 Combining Pseudo-Point and State Space Approximations

chain, whose transition dynamics are a function of the kernel of the GP. This means that
standard algorithms (similar to Kalman filtering) can be utilised to perform inference under
Gaussian likelihoods, thus achieving linear scaling in T .

100 102 104 106 108 1010
10−8

10−6

10−4

10−2

100

102

104

N

tim
e

(s
)

100 102 104 106 108 1010

N
Matern12 – static-lgssm Matern12 – lgssm Matern12 – naive
Matern32 – static-lgssm Matern32 – lgssm Matern32 – naive
Matern52 – static-lgssm Matern52 – lgssm Matern52 – naive

Fig. 3.2 The total time to compute the log marginal likelihood (left) and its gradient (right)
of a GP with N observations for various inference methods, all of which are exact.

Performance in Practice It is helpful to have a rough sense of how well this can work in
practice. Fig. 3.2 depicts the time performance of state-space methods for three half-integer
Matérn kernels, in comparison to the usual procedure of constructing a dense covariance ma-
trix and computing its Cholesky factorisation and so forth. There are two implementations of
the state-space approximation labelled lggsm and lggsm-static. All computations performed
using the former utilise standard heap allocated arrays, while the latter uses stack-allocated
arrays that are optimised for operations on small arrays.1 Both scale linearly in N , but the
latter is faster in absolute terms in this case. Overall, the precise numbers are less important
than a few qualitative observations. Firstly, the naïve approach to computing the log marginal
likelihood scales as expected, and is outperformed by both implementations of the state-space
method for N > 100. Secondly, the heap-allocated implementation is easily able to handle
107 observations, and the stack-allocated 109. The upshot is that this approach to inference
works really very well in some cases, allowing one to scale to large data sets.

These techniques can be extended to separable and sum-separable spatio-temporal GPs for
rectilinear grids of inputs, the details of which are as follows.

1https://github.com/JuliaArrays/StaticArrays.jl

https://github.com/JuliaArrays/StaticArrays.jl

3.3 State Space Approximations to Sum-Separable Spatio-Temporal GPs 71

Separable GPs Let f̄ be an augmentation of f such that the distribution over f̄(τ, r, 1)
is approximately equal to that of f(τ, r), and conditioning on all latent dimensions renders
f̄ Markov in τ . f̄ is specified implicitly through a linear stochastic differential equation,
meaning that inference under Gaussian observations can be performed efficiently via filtering
/ smoothing in a Linear-Gaussian State Space Model (LGSSM). Let f̄t be the collection
of random variables in f̄ at inputs given by the Cartesian product between the singleton
{t}, NT arbitrary locations in space r1:NT

, and all of the latent dimensions {1, . . . , D}.
Let the kernel of f be separable: κ((r, τ), (r′, τ ′)) = κr(r, r′)κτ (τ, τ ′). Any collection of
finite dimensional marginals f̄ := f̄1:T , each using the same r1:NT

, form an LGSSM with
NTD-dimensional state, and dynamics

f̄t | f̄t−1 ∼N
(
[INT

⊗At] f̄t−1,C
r
f ⊗Qt

)
(3.3)

Hab := Ia ⊗
[
1 01×b−1

]
(3.4)

ft =HNTD f̄t, (3.5)

yt | ft ∼N (ft,St) (3.6)

where ⊗ denotes the Kronecker product, At ∈ RD×D and Qt ∈ RD×D are functions of κτ ,
Qt is positive definite, Cr

f is the covariance matrix associated with κr and r1:NT
, 0p×q is a

p× q matrix of zeros, yt is the block of y containing the observations at the tth time, and the
diagonal matrix St is the on-diagonal block of S corresponding to yt. See Solin (2016) for
further details regarding At and Qt.

Sum-Separable GPs Let f be the sum-separable GP given by summing over fp ∼
GP(0, κp). A state space approximation to f is obtained by constructing a Dp-dimensional
state space approximation for each fp, the finite dimensional marginals of which form an
LGSSM

f̄pt | f̄
p
t−1 ∼N

(
[INT

⊗Ap
t] f̄

p
t−1, [C

r,p
f ⊗Qp

t]
)

(3.7)

ft =
P∑

p=1

HNTDp f̄
p
t (3.8)

where Ap
t , Qp

t , and Cr,p
f are defined in the same way as above for each fp, and yt | ft is again

given by Eq. (3.6). This LGSSM has NT

∑P
p=1Dp latent dimensions, increasing the time

and memory needed to perform inference when compared to a separable model, and is the
price of a more flexible model.

72 Combining Pseudo-Point and State Space Approximations

Benefits and Limitations While this formulation truly scales linearly in T it has two clear
limitations, (i) all locations of observations must lie on a rectilinear time-space grid if any
computational gains are to be achieved; and (ii) inference scales cubically in NT , meaning
that inference is rendered infeasible by time or memory constraints if a large number of
spatial locations are observed.

3.4 Conditional Independence Results

The key idea in this chapter will be to locate pseudo-points on a rectilinear grid, freeing
up observations to lie anywhere in space. This section establishes the key conditional
independence properties associated with this arrangement of pseudo-points and observations.

First, the key pre-existing conditional independence for separable GPs (Sec. 3.4.1) is intro-
duced and explained. It is then built upon and utilised in a couple of ways, which enable the
introduction of the approximation in the next section. The main conditional independence re-
sult is extended in Sec. 3.4.2 from specifying the conditional independence structure between
individual points, to the structure between certain sets of points. Next, Sec. 3.4.3 shows
that a state-space approximation to a separable GP will always retain separability structure
which exists in the original un-approximated prior, meaning that such approximations can
be constructed without risking losing this property. Sec. 3.4.4 pin-points the conditional
independence structure found between pseudo-points and observations of the above form in
separable GPs, and Sec. 3.4.5 extends it to sum-separable GPs.

τ τ ′

r

r′

⊥⊥ |
Fig. 3.3 Depiction of the conditional independence property in Eq. (3.9). The blue square is
f(r, τ), the red square is f(r′, τ ′), and the black circle is f(r, τ ′).

3.4 Conditional Independence Results 73

τ ′

⊥⊥ |
τ

r

Fig. 3.4 Depiction of the conditional independence property in Eq. (3.11). The blue squares
are f(R, T), the red squares are f(R′, T ′), and the black circles are f(R, T ′).

3.4.1 The Conditional Independence Structure of Separable GPs

O’Hagan (1998) showed that a separable GP f(r, τ) has the following conditional indepen-
dence properties:

f(r, τ) ⊥⊥ f(r′, τ ′) | f(r, τ ′) , (3.9)

f(r, τ) ⊥⊥ f(r′, τ ′) | f(r′, τ) . (3.10)

These are explained graphically in Fig. 3.3. It is straightforward to show that this property
extends to collections of random variables in f :

f(R, T) ⊥⊥ f(R′, T ′) | f(R, T ′) where (3.11)

f(R, T) := {f(r, τ) | r ∈ R, τ ∈ T }
f(R′, T ′) := {f(r, τ ′) | r ∈ R′}
f(R, T ′) := {f(r, τ ′) | r ∈ R}

where R and R′ are sets of points in space, T is a set of points through time, and τ ′ ∈ T .
This conditional independence property is depicted in Fig. 3.4, and it is this second property
that sits at the core of the approximation introduced in the next section. In this section
this extension is derived and explained, and the manner in which it can be applied to the
state-space approximation f̄ demonstrated.

74 Combining Pseudo-Point and State Space Approximations

3.4.2 Extending The Conditional Independence Result

The following lemma establishes an analogue of the conditional independence result intro-
duced by O’Hagan (1998), which applies to individual points, to collections of points in a
separable Gaussian process.

Lemma 3.4.1. Let X and Y be sets, f ∼ GP(0, κ) where κ((x, y), (x′, y′)) :=

κx(x, x
′)κy(y, y

′), x, x′ ∈ X and y, y′ ∈ Y , and κx and κy are non-degenerate, meaning
covariance matrices constructed using them are invertible. Then for finite sets X1,X2 ⊂ X ,
Y1,Y2 ⊂ Y , and sets of random variables

f(X1,Y1) = {f(x, y) | x ∈ X1, y ∈ Y1},
f(X2,Y2) = {f(x, y) | x ∈ X2, y ∈ Y2},
f(X2,Y1) = {f(x, y) | x ∈ X2, y ∈ Y1},

it is the case that
f(X1,Y1) ⊥⊥ f(X2,Y2) | f(X2,Y1) . (3.12)

Proof. Since f(X1,Y1), f(X2,Y2), and f(X2,Y1) are jointly Gaussian, it is sufficient to
show that the conditional covariance cov(f(X1,Y1) , f(X2,Y2) | f(X2,Y1)) is always 0.
Assign an arbitrary ordering to the elements in each of X1,X2,Y1, and Y2, and let CXiXj

be the covariance matrix obtained by evaluating κx at each pair of points Xi and Xj , such
that the (p, q)th element of CXiXj

is κx evaluated at the pth and qth elements of Xi and Xj

respectively. Let CYi,Yj
be analogously defined for κy and Yi, Yj . Denote the Kronecker

product by ⊗, and order the elements of f(X1,Y1), f(X2,Y2), and f(X2,Y1) such that

cov(f(X1,Y1) , f(X2,Y2)) = CX1X2 ⊗CY1Y2 ,

cov(f(X1,Y1) , f(X2,Y1)) = CX1X2 ⊗CY1Y1 ,

cov(f(X2,Y1) , f(X2,Y2)) = CX2X2 ⊗CY1Y2 ,

cov(f(X2,Y1)) = CX2X2 ⊗CY1Y1 .

3.4 Conditional Independence Results 75

κx and κy are non-degenerate, so CX2X2 , CY1Y1 , and cov(f(X2,Y1)) are invertible, and the
conditional covariance is

cov(f(X1,Y1) , f(X2,Y2) | f(X2,Y1))

= cov(f(X1,Y1) , f(X2,Y2))−
cov(f(X1,Y1) , f(X2,Y1)) cov(f(X2,Y1))

−1 cov(f(X2,Y1) , f(X2,Y2))

= CX1X2 ⊗CY1Y2 − (CX1X2 ⊗CY1Y1) (CX2X2 ⊗CY1Y1)
−1 (CX2X2 ⊗CY1Y2)

= CX1X2 ⊗CY1Y2 −
(
CX1X2C

−1
X2X2

CX2X2

) (
CY1Y1C

−1
Y1Y1

CY1Y2

)
= CX1X2 ⊗CY1Y2 −CX1X2 ⊗CY1Y2

= 0.

This result is depicted in Fig. 3.5 – specifically letting f(X1,Y1) be the red squares, f(X2,Y2)

the blue squares, and f(X2,Y1) the black dots. X1 are the x-coordinates of the red squares,
X2 the x-coordinates of the blue squares / black circles, Y1 the y-coordinates of the red
squares / black circles, and Y2 the y-coordinates of the blue squares.

Lemma 3.4.1 establishes that a GP being separable implies the presented conditional inde-
pendence between collections of points. O’Hagan (1998) goes further in the single-point
case, also showing that the conditional independence property implies separability, hence
showing that the separability and conditional independence statements are equivalent. While
it seems plausible that such an equivalence could be established for collections of points,
such a result is not needed in this work, and is therefore not pursued.

3.4.3 Separability of the State-Space Approximation

Solin (2016) shows (chapter 5) that a separable spatio-temporal GP f , whose time-kernel has
Markov structure, can be expressed as another GP f̄ with some auxiliary dimensions. The
kernel of f̄ is not given explicitly – instead it is expressed in terms of an infinite-dimensional
Kalman filter. Consequently, it is unclear without further investigation whether or not the
kernel over f̄ is separable. I show that, grouping together time and the latent dimension, it in
fact separates over space and the grouped dimensions.

Let τ ∈ R denote a point in time, and samples from f̄(r, τ, d) be the random variable
in f associated with the spatial location r, time point τ , and latent dimension d. Denote
f̄τ = f̄(·, τ, ·), then Solin (2016) shows that

f̄τ ∼ GP(0, κr(r, r
′)ατ (d, d

′)) (3.13)

76 Combining Pseudo-Point and State Space Approximations

⊥⊥ |
y

x

Fig. 3.5 Under a separable GP prior, the random variables at the red squares are conditionally
independent of those at the blue squares given those at the black circles.

and, for any τ ′, kernel ατ : {1, ..., D} × {1, ..., D} → R (isomorphic to a D ×D matrix),
kernel over space κr. Let Aτ→τ ′ : X × {1, ..., D} → X × {1, ..., D} be the linear transition
operator,

f̄τ ′ = Aτ→τ ′ f̄τ + qτ→τ ′ (3.14)

(Aτ→τ ′ f̄τ)(r, d) =
D∑
j=1

[Aτ→τ ′]dj f̄τ (r, j) , (3.15)

where each qτ→τ ′ is an independent GP, samples from which are functions X ×{1, ..., D} →
R, and Aτ→τ ′ is a D ×D matrix of real numbers.

Lemma 3.4.2. Let f̄ ∼ GP(0, κ̄), the distribution over any time-marginal f̄τ be defined
according to Eq. (3.13), and the conditional distribution over f̄τ ′ given f̄τ Eq. (3.14). It
follows that κ̄ is separable, and of the form

κ̄((r, τ, d), (r′, τ ′, d′)) = κr(r, r
′)κτd((τ, d), (τ

′, d′)) (3.16)

for some kernel κτd.

3.4 Conditional Independence Results 77

Proof.

κ̄((r, τ, d), (r′, τ ′, d′)) := cov
(
f̄(r, τ, d) , f̄(r′, τ ′, d′)

)
= cov

(
f̄τ (r, d) , f̄τ ′(r

′, d′)
)

=E
[
f̄τ (r, d) f̄τ ′(r

′, d′)
]

=E
[
f̄τ (r, d) {(Aτ→τ ′ f̄τ)(r

′, d′) + qτ→τ ′(r
′, d′)}

]
=E

[
f̄τ (r, d) {(Aτ→τ ′ f̄τ)(r

′, d′)
]
.

where the penultimate equality follows from independence. Applying Eq. (3.15) yields

κ̄((r, τ, d), (r′, τ ′, d′)) =
D∑
j=1

[Aτ→τ ′]d′jE
[
f̄τ (r, d) f̄τ (r

′, j)
]

=
D∑
j=1

[Aτ→τ ′]d′jE
[
f̄(r, τ, d) f̄(r′, τ, j)

]
Applying Eq. (3.13) yields

κ̄((r, τ, d), (r′, τ ′, d′)) =
D∑
j=1

[Aτ→τ ′]d′jκr(r, r
′)ατ ((d, j)

=κr(r, r
′)

D∑
j=1

[Aτ→τ ′]d′jατ (d, j)

=κr(r, r
′)κτd((τ, d), (τ

′, d′))

where

κτd((τ, d), (τ
′, d′)) :=

D∑
j=1

[Aτ→τ ′]d′jατ (d, j) .

This separability result is important, because it says that any of the infinite-dimensional
state-space approximations to separable spatio-temporal GPs used in this chapter themselves
correspond to separable spatio-temporal GPs. It would be a contradiction for this not to be
the case when state-space augmentations are exact (such as for GPs with Matern half-integer
kernels), but it is not immediately obvious when they are approximations.

78 Combining Pseudo-Point and State Space Approximations

3.4.4 Conditional Independence Structure of Observations and
Pseudo-Points Under a Separable Prior

Assume that the set of pseudo-inputs z̄ form the rectilinear grid

z̄ := Zr × T × {1, ..., D} (3.17)

where × denotes the Cartesian product, and Zr ⊂ X and T ⊂ R are the finite sets of spatial
and temporal locations at which pseudo-inputs are present, with sizes Mτ and T respectively.
Let the pseudo-points be

ū := {f̄(r, τ, d) | (r, τ, d) ∈ z̄}. (3.18)

Furthermore, let
uτ := {f̄(r, τ, 1) | r ∈ Zr}, (3.19)

then ū \ uτ is the collection of all pseudo-points not in uτ .

Let X1, ...,XT ⊂ X be finite sets of of points in space, one for each point in T . The set of
points

xτ := {(r, τ, 1) | r ∈ Xτ} (3.20)

are the elements of f̄ which are observed (noisily) at time τ , so let

fτ := {f̄(r, τ, d) | (r, τ, d) ∈ xτ} (3.21)

It is now possible to present the key result:

Theorem 3.4.3.
fτ ⊥⊥ ū \ uτ | uτ . (3.22)

That is: fτ is conditionally independent of all pseudo-points not in the first latent dimension
of f̄ at time τ , given all of the pseudo-points in the first latent dimension of f̄ at time τ –
Fig. 3.6 visualises this property.

Proof. Let X := X and Y := R×{1, ..., D} – i.e., group together time and latent dimension
– and (abusing notation) let

f̄(r, (τ, d)) := f̄(r, τ, d), r ∈ X , (τ, d) ∈ Y . (3.23)

3.4 Conditional Independence Results 79

By Lemma 3.4.2 the kernel over f̄ is separable across X and Y . Applying Lemma 3.4.1 to f̄

and

X1 := Xτ , X2 := Zr, Y1 := {(τ, 1)}, and Y2 := [T × {1, ..., D}] \ Y1. (3.24)

yields the desired result, as f̄X1,Y1 = fτ , f̄X2,Y2 = ū \ uτ , and f̄X2,Y1 = uτ .

This result is depicted in Fig. 3.6. Of the entire 3 dimensional grid of pseudo-points, only
those in the first latent dimension at the same time as fτ are needed to achieve conditional
independence from all others.

⊥⊥ |τ

r d = 1

τ

r d > 1

Fig. 3.6 Slices of the 3-dimensional rectilinear grid of pseudo-points / inputs, as well as inputs
of observations, depicting the conditional independence structure presented in Theorem 3.4.3.
Unfilled red squares correspond to fτ , black circles to uτ , and filled blue squares to ū \ uτ .
The left-hand side corresponds to d = 1, while the right-hand side corresponds to d > 1.
Notice that uτ and fτ only appear in the d = 1 slice.

3.4.5 Conditional Independence Structure under a Sum-Separable
Prior

Here I extend the above result to sum-separable GPs. Recall that a sum-separable GP f̄ s is
defined to be a GP of the form

f̄ s :=
P∑

p=1

f̄p, f̄p ∼ GP(0, κ̄p) , (3.25)

80 Combining Pseudo-Point and State Space Approximations

where each f̄p is an independent separable GP. Locate rectilinear grids of pseudo-inputs in
each of the separable processes:

z̄p := Zp
r × T × {1, ..., D} (3.26)

where Zp
r are a collection of points in space which are specific to each p. Each of these

P grids of points is of the same form as those utilised for separable processes previously.
Define sets of pseudo-points for each process:

ūp := {f̄p(r, τ, d) | (r, τ, d) ∈ z̄p}, (3.27)

up
τ := {f̄p(r, τ, 1) | r ∈ Zp

r}, (3.28)

p ∈{1, ..., P}, (3.29)

and sets containing all of the of pseudo-points through the union of the above process-specific
pseudo-points:

ū := ∪Pp=1 ū
p, (3.30)

uτ := ∪Pp=1 u
p
τ . (3.31)

Furthermore, let

fpτ := {f̄p(r, τ, 1) | r ∈ Xτ} (3.32)

f sτ := {f̄ s(r, τ, 1) | r ∈ Xτ} (3.33)

Theorem 3.4.4 (Conditional Independence in Sum-Separable GPs).

f sτ ⊥⊥ ū \ uτ | uτ

Proof. As in Theorem 3.4.3, it suffices to show that cov(f sτ , ū \ uτ | uτ) = 0. It is the case
that

cov
(
f̄s(r, τ, d), f̄p(r

′, τ ′, d′)
)
= cov

(
f̄p(r, τ, d), f̄p(r

′, τ ′, d′)
)
, (3.34)

3.5 Utilising Separability to Obtain the Best of Both Worlds 81

and the covariance between any points in f̄p and f̄p′ is 0 if p ̸= p′, so

cov(f sτ , ū \ uτ) =
[
cov(f1τ , ū

1 \ u1
τ) . . . cov

(
fPτ , ū

P \ uP
τ

)]
cov(f sτ ,uτ) =

[
cov(f1τ ,u

1
τ) . . . cov

(
fPτ ,u

P
τ

)]
cov(uτ) =

cov(u1
τ) 0

. . .

0 cov
(
uP
τ

)

cov(uτ , ū \ uτ) =

cov(u1
τ , ū \ u1

τ) 0
. . .

0 cov
(
uP
τ , ū \ uP

τ

)
 .

Therefore

cov(f sτ , ū \ uτ | uτ) = cov(f sτ , ū \ uτ)− cov(f sτ ,uτ) [cov(uτ)]
−1cov(uτ , ū \ uτ)

=
[
cov(f1τ , ū

1 \ u1
τ | u1

τ) . . . cov
(
fPτ , ū

P \ uP
τ | uP

τ

)]
=

[
0 . . . 0

]
(3.35)

where the final equality follows from Theorem 3.4.3.

3.5 Utilising Separability to Obtain the Best of Both
Worlds

We now turn to the main contribution of this chapter: combining the pseudo-point and
state space approximations using the various properties established in previous sections of
this chapter. The result is an approximation which is applicable to any sum-separable GP
whose time kernels can be approximated by a linear SDE. We do this simply by constructing
a variational pseudo-point approximation to the state space approximation to the original
process. In cases where the state space approximation is exact, this is similar in spirit to
constructing an inter-domain pseudo-point approximation (Lazaro-Gredilla and Figueiras-
Vidal, 2009) to the original process, where some of the pseudo-points are placed in auxiliary
dimensions.

In this section we show that by constraining the pseudo-inputs, approximate inference
becomes linear in time.

82 Combining Pseudo-Point and State Space Approximations

3.5.1 Combining the Approximations

We now combine the pseudo-point and state space approximations, and show how the
temporal conditional independence property means that the optimal approximate posterior
is Markov. This in turn leads to a closed-form expression for the optimum under Gaussian
observation models and the existence of a simplified LGSSM in which exact inference yields
optimal approximate inference in the original model.

Pseudo-Point Approximation of State Space Augmentation We perform approximate
inference in a separable GP f with the kernel in Eq. (3.1) by applying the standard variational
pseudo-point approximation (Sec. 1.3) to its state space augmentation (Sec. 3.3) f̄ :

q
(
f̄
)
:= q(ū) p

(
f̄ ̸=ū

∣∣ ū) , q(ū) = N (ū;mq
ū,C

q
ū) ,

where the pseudo-points ū = ū1:T form a rectilinear grid of points in time, space, and all
of the latent dimensions with the same structure as f̄ in Sec. 3.3, but replacing r1:NT

with a
collection of Mτ spatial pseudo-inputs, z1:Mτ , for a total of TMτD pseudo-points. p(ū) is
therefore Markov-through-time with conditional distributions

ūt | ūt−1 ∼N ([IMτ ⊗At]ūt−1,C
r
u ⊗Qt) , (3.36)

ut :=HMτDūt. (3.37)

where Cr
u is the covariance matrix associated with κr and z1:Mτ . Note the resemblance to

Eq. (3.3). No constraint is placed on the location of the pseudo-points in space, only that
they must remain at the same place for all time points.

Crucially, we now relax the assumption that the inputs associated with f must form a
rectilinear grid. Instead, it is necessary only to require that each observation is made at one of
the T times at which we have placed pseudo-points. We denote the number of observations
at time t by Nt, and continue to denote by ft the set of observations at time t.

Utilising Conditional Independence Due to the extensions to O’Hagan (1998)’s con-
ditional independence property derived in the previous section, and the locations of the
pseudo-inputs, p(ft | ū) = p(ft |ut). That is, the conditional distribution over ft given all of
the pseudo-point depends only on those at time t – moreover, it only depends on the observed
component of the pseudo-points at time t, ut, as opposed to all dimensions, ūt. Consequently,
the reconstruction term associated with the observations at time t in the ELBO depends only

3.5 Utilising Separability to Obtain the Best of Both Worlds 83

on ut, as opposed to the entirety of ū:

L =
T∑
t=1

rt −KL[q(ū) ||p(ū)] , (3.38)

rt :=Eq(ut)

[
Ep(ft |ut)[log p(yt | ft)]

]
(3.39)

This property alone can be utilised to yield substantial computational savings – only the
covariance between ut and ft need be computed, as opposed to all of ū and ft. Moreover, in
accordance with Sec. B.1.3, this means that

Cf ūΛū =

B1 0
. . .

0 BT

 , Bt := CftutΛutHMτD. (3.40)

The Optimal Approximate Posterior is Markov As an immediate consequence of
Eq. (3.38), and by the same argument as that made by Seeger (1999), highlighted by Opper
and Archambeau (2009), the optimal approximate posterior precision satisfies

Λq
ū = Λū +

G1 0
. . .

0 GT

 ,Gt := −2∇C
q
t
rt, (3.41)

where Λq
ū := [Cq

ū]
−1, and Cq

t is the tth block on the diagonal of Cq
ū, and rt is defined as in

Eq. (3.39). Recall that the precision matrix of a Gauss-Markov model is block tridiagonal
(see e.g. Grigorievskiy et al. (2017)), so Λū is block tridiagonal. Further, the exact posterior
precision of an LGSSM with a Gaussian observation model is given by the sum of this block
tridiagonal precision matrix and a block-diagonal matrix with the same block size. Λq

ū has
precisely this form, so the optimal approximate posterior over ū must be a Gauss-Markov
chain.

Approximate Inference via Exact Inference in an Approximate Model Provided that
each Gt is positive definite, the above is equivalent to the optimal approximate posterior
having density proportional to

q(ū) ∝
T∏
t=1

p(ūt | ūt−1)N
(
yq
t ; ūt,G

−1
t

)
, (3.42)

84 Combining Pseudo-Point and State Space Approximations

where yq
1, ...,y

q
T are a collection of T surrogate observations, detailed in Sec. B.1.1. Thus

the optimal q(ū) is produced by performing exact inference in an LGSSM which is closely-
related to the original model. Moreover, Ashman et al. (2020) (App. A) show that Gt can be
written as a sum of Nt rank-1 matrices.

Gt will always be positive definite when log p(yt | ft) is convex in ft. To see this, recall that
Opper and Archambeau (2009) show that

− 2∇C
q
t
rt = −2E q(ut)

[
∇2

ft log p(yt | ft)
]

(3.43)

provided that log p(yt | ft) is twice-differentiable in ft. This Hessian inside the expectation
will be negative definite if log p(yt | ft) is strictly log concave in ft. Since convex combina-
tions of negative definite matrices are negative definite, of which the expectation under q is an
example, the positive definiteness of the optimal Gt follows. This means that we can safely
deploy standard filtering (Kalman, 1960) and smoothing (Rauch et al., 1965) algorithms to
perform approximate inference.

On the other hand, it is not possible to say anything in general about whether the optimal
choice of Gt will be positive definite when the observation model density is not log-concave
in ft. This is a practical problem because standard implementations of inference algorithms
for LGSSMs assume that Gt is positive definite. While it might be possible to re-implement
such algorithms in a manner that does not require this constraint, it would require additional
effort, and may result in a loss of numerical stability.

Solution for Gaussian Observation Models Under a Gaussian observation model, the
optimal approximate posterior is given by the exact posterior under the DTC observation
model, as discussed in section Sec. 1.3. Eq. (3.40) means that the DTC observation model
can be written as

N (y;Cf ūΛūū,S) =
T∏
t=1

N (yt;Btūt,St) , (3.44)

where Bt is given in Eq. (3.40). In conjunction with p(ū) in Eq. (3.36), this yields the
required LGSSM.

This LGSSM can be utilised both to perform approximate inference and compute the saturated
bound in linear time, repurposing existing code – see Sec. B.1.2. This LGSSM also makes it
clear, for example, how to employ the parallelised inference procedures proposed by Särkkä
and García-Fernández (2020) and Loper et al. (2020) within this approximation.

3.5 Utilising Separability to Obtain the Best of Both Worlds 85

Sum-Separable Models Extending this approximation to sum-separable processes is simi-
lar to the standard state space approximation. A rectilinear grid of pseudo-points is placed
in each of the P latent processes, for a total of TMτ

∑P
p=1 Dp pseudo-points. The resulting

LGSSM is

ūp
t | ū

p
t−1 ∼N

(
[IMτ ⊗Ap

t] ū
p
t−1, [C

r,p
u ⊗Qp

t]
)

(3.45)

p(yt | ūt) =N (yt;
∑P

p=1B
p
t ū

p
t ,St) .

Bp
t :=Cfpt u

p
t
Λup

t
HMτDp .

Note the resemblance to Eq. (3.7).

Efficient Inference in the Conditionals The structure present in each Bp
t can be used to

accelerate inference. In particular note that HMτDp has size Mτ × DpMτ while Cp
ftut

Λp
ut

is Nt ×Mτ . Certainly Mτ ≤ DpMτ and typically Mτ < N , so this linear transformation
forms a bottleneck. Sec. B.3 explores this property, and shows how to utilise it to accelerate
inference.

Computational Complexity The total number of flops required to compute the saturated
ELBO is T (DMτ)

3 + D3M2
τ + M2

τ

∑T
t=1Nt to leading order. This is a great deal fewer

when T is large than the M3 +M2N = M3
τ T

3 +M2
τ T

2N required if the bound is computed
naively. Similar improvements are achieved when making posterior predictions.

Utilising Other Pseudo-Point Approximations The conditional independence property
utilised to develop the variational approximation in this section also shines new light on
the work of Hartikainen et al. (2011). In the specific case of their equation 5, in which the
observation model is (adopting their notation) p(yk |xk) = N (yk; [IN ⊗H]xk,St), they
perform approximate inference in p(ū) using the modified observation model

p̃(yt | ūt) :=N
(
yt;CftūtΛūtūt, [C̃y]t

)
,

[C̃y]t := diag(Cft −CftūtΛūtCūtft) + St

which is inspired by the well-known FITC (Csató and Opper, 2002; Snelson and Ghahramani,
2005) approximation. However, due to O’Hagan (1998)’s conditional independence property,

86 Combining Pseudo-Point and State Space Approximations

this is equivalent to

p̃(y | ū) :=N
(
y;Cf ūΛūū, C̃y

)
,

C̃y := diag(Cf −Cf ūΛūCūf) + S.

While Hartikainen et al. (2011) did not actually consider the Gaussian observation model
in their work, it is clear from the above that they would have utilised exactly the FITC
approximation applied to f̄ had they done so.

Bui et al. (2017) showed that both FITC and VFE can be viewed as edge cases of the Power
EP algorithm introduced by Minka (2004). Consequently the equivalent approximate model
generalised both that of FITC and VFE – only C̃y is changed from FITC: let α ∈ [0, 1], then

C̃y := α diag(Cf −Cf ūΛūCūf) + S.

In short, most standard pseudo-point approximations can be straightforwardly combined with
state space approximations for sum-separable spatio-temporal GPs in the manner proposed,
due to the conditional independence property.

Relationship with Other Approximation Techniques There are several existing methods
that could be used to scale GPs to large spatio-temporal problems beyond those already con-
sidered – each method makes different assumptions about the types of problems considered,
therefore making different trade-offs relative to ours.

The popular Kronecker-product methods for separable kernels explored by Saatçi (2012)
are unable to handle heteroscedastic observation noise or missing data, scale cubically in
time, and require observations to lie on a rectilinear grid. Our approach suffers none of these
limitations.

Wilson and Nickisch (2015) introduced a pseudo-point approximation they call Structured
Kernel Interpolation (SKI) which is closely-related to the Kronecker-product methods, but
removes many of their constraints. In particular, SKI places pseudo-points on a grid across all
input dimensions, and utilises them to construct a sparse approximation to the prior covariance
matrix over the data – crucially it is local in the sense that the approximation to the covariance
between the pseudo-points and any given point depends only on a handful of pseudo-points.
SKI covers the domain in a regular grid of points, which results in exponential growth in the
number of pseudo-points as the number of dimensions grows. So, while this approximation
scales very well in low-dimensional settings, it does not scale to input domains comprising

3.6 Inference Under Non-Gaussian Observation Models 87

more than a few dimensions. Moreover, to utilise this grid structure, separability across all
dimensions is required. Gardner et al. (2018a) alleviates this exponential scaling problem, but
still require that the kernel be separable across all dimensions if their approximation is to be
applied. Our approach does not suffer from this constraint as only the time dimension must
be covered by pseudo-points – there are no constraints on their spatial locations. Naturally,
that we do not perform similar approximations to SKI across the spatial dimensions means
that our method will have the standard set of limitations experienced by all pseudo-point
methods as the number of points in space grows. In short, the two classes of method are
applicable to different kinds of spatio-temporal problems. They take somewhat orthogonal
approaches to approximate inference, so combining them by utilising SKI across the spatial
dimensions could offer the benefits of both classes of approximation in situations where SKI
is applicable to the spatial component.

Similarly, approximations based on the relationship between GPs and Stochastic Partial
Differential Equations (Lindgren et al., 2011; Whittle, 1963) could be combined with this
work to improve scaling in space when the spatial kernel is in the Matérn family. In low-
dimensional settings other standard inter-domain pseudo-point approximations such as those
of Hensman et al. (2017), Burt et al. (2020b), and Dutordoir et al. (2020) could be applied.

3.6 Inference Under Non-Gaussian Observation Models

Thus far, only Gaussian observation models centred on affine transformations of the latent
GP have been considered, under which the optimal approximate posterior distribution is
Gaussian. Once outside this family of observation models, the optimal q(u) is no longer
Gaussian. It is, however, standard to restrict the family of approximations to the posterior
to be Gaussian (e.g. Hensman et al. (2015)). As shown in the previous section, the optimal
approximate posterior precision is block-tridiagonal regardless of the observation model,
from which it follows that the optimal Gaussian approximation must be a Gauss-Markov
model when the density of the observation model is log-convex in the latent process.

While in general such a model has a total of T (DMτ +2(DMτ)
2) free variational parameters,

in the cases considered here the off-diagonal blocks of the precision are the same as in the
prior, meaning that there are at most T (DMτ + (DMτ)

2) free (variational) parameters – this
is also clear from Eq. (3.41). While one could directly parametrise the precision, this might
be inconvenient from the perspective of numerical stability and implementation (standard
filtering / smoothing algorithms do not work directly with the precision). Consequently, it
probably makes sense to set up a surrogate model in line with that discussed by Khan and

88 Combining Pseudo-Point and State Space Approximations

Lin (2017), Chang et al. (2020), and Ashman et al. (2020) – if the observation model is non-
convex in the latent process this may introduce an additional loss of accuracy. Alternatively
one could parametrise the filtering distributions directly, from which the posterior marginals
could be obtained using standard smoothing algorithms.

3.7 Experiments

We view the proposed approximation to be a useful contribution if it is able to outperform
the vanilla state space approximation (Sec. 3.3), which is a strong baseline for the tasks
we consider. To that end, we benchmark inference against synthetic data in Sec. 3.7.1, on
a large-scale temperature modelling task to which both the vanilla and pseudo-point state
space approximations can feasibly be applied (Sec. 3.7.2), and finally to a problem to which
it is completely infeasible to apply the vanilla state space approximation (Sec. 3.7.3). We do
not compare directly against the vanilla pseudo-point approximations of Titsias (2009) and
Hensman et al. (2013). As noted in Sec. 1.3, they are asymptotically no better than exact
inference for problems with long time horizons.

3.7.1 Benchmarking

We first conduct two simple proof-of-concept experiments on synthetic data with a separable
GP to verify our proposed method. In both experiments we consider quite a large temporal
extent, but only moderate spatial, since we expect the proposed method to perform well in
such situations – if the spatial extent of a data set is very large relative to the characteristic
spatial variation, pseudo-point methods will struggle and, by extension, so will our method.
Sec. B.2.1 contains additional details on the setup used, and Sec. B.2.1 contains the same
experiments for a sum-separable model.

Arbitrary Spatial Locations Fig. 3.7 (top) shows how inputs were arranged for this
experiment; at each time 10 spatial locations were sampled uniformly between 0 and 10, so
N = 10T . The spatial location of pseudo-inputs are regular between 0 and 10. When using
pseudo-points, we are indeed able to achieve substantial performance improvements relative
to exact inference by utilising the state space methodology, while retaining a tight bound.

Grid-with-Missings Fig. 3.8 (top) shows how (pseudo) inputs were arranged for this
experiment for Mτ = 10; the same 50 spatial locations are considered at each time point, but
5 of the observations are dropped at random, for a total of Nt = 45 observations per time

3.7 Experiments 89

0 5 10 15 20 25
0

2

4

6

8

10

time

sp
ac

e

Pseudo-Inputs
Observation Inputs

101 102 103 104 105

10−3

10−2

10−1

100

101

T

C
om

pu
te

Ti
m

e
(s

)

Mτ = 20

Mτ = 10

Mτ = 5
exact

Fig. 3.7 Arbitrary Spatial Locations. Top: Locations of (pseudo-)inputs for Mτ = 10. 10
locations in space chosen randomly at each time point. Bottom: Time to compute ELBO vs
performing exact inference. ELBO tight for Mτ = 20; see Fig. B.1.

point – our largest case therefore involves N = 4.5× 106 observations. The timing results
show that we are able to compute a good approximation to the LML using roughly a third of
the computation required by the standard state space approach to inference.

3.7.2 Climatology Data

The Global Historical Climatology Network (GHCN) (Menne et al., 2012) comprises daily
measurements of a variety of meteorological quantities, going back more than 100 years. We
combine this data with the NASA Digital Elevation Model (NASA-JPL, 2020) to model the
daily maximum temperature in the region (47°,−127°) and (49°,−122°), which contains
99 weather stations. We utilise all data in this region since the year 2000, training on 90%

(331522) and testing on 10% (36835) of the data. This experiment was conducted on a
workstation with a 3.60 GHz Intel i7-7820X CPU (8 cores), and 46 GB of 3000 MHz DDR3
RAM.

90 Combining Pseudo-Point and State Space Approximations

0 5 10 15
0

1

2

3

4

5

time

sp
ac

e

Pseudo-Inputs
Observation Inputs

101 102 103 104 105

10−3

10−2

10−1

100

101

T

C
om

pu
te

Ti
m

e
(s

)

Mτ = 20

Mτ = 10

Mτ = 5

exact (sde)
exact

Fig. 3.8 Grid-with-Missings. Top: Locations of (pseudo-)inputs – note the grid structure with
50 observations per time point, of which 5 are missing. Bottom: Time to compute ELBO vs
LML naively and via state space methods (sde). ELBO tight for Mτ = 20; see Fig. B.1.

Fig. 3.9 Counterpart to Fig. 3.1 depicting the posterior standard deviation. The colour scale
(0 1.75) is relative, pink squares are weather stations, and orange dots pseudo-points.

3.7 Experiments 91

101.5 102.0 102.5 103.0 103.5 104.0 104.5
0.25

0.30

0.35

0.40

0.45

0.50

0.55

Run Time (s)

R
SM

SE

SoD, Separable
SoD, Sum-Separable
P-P, Separable
P-P, Sum-Separable

101.5 102.0 102.5 103.0 103.5 104.0 104.5

0.2

0.4

0.6

0.8

Run Time (s)

N
PP

L
P

Fig. 3.10 Test Root Standardised Mean-Squared Error (RSMSE) and Negative Posterior
Predictive Log Probability (NPPLP). Marked points on Pseudo-Point curves used M ∈
{5, 10, 20, 50} moving from left to right – similarly for SoD markers, with the addition of
M = 99, corresponding to learning with the exact LML. Larger M improves performance,
but time taken to train is increased. Sum-Separable models take longer to train than Separable
but can produce better results.

−1.5 2.0

(a) Mean

0.0 0.5

(b) Std. dev.
Fig. 3.11 Apartment price posterior mean and standard deviation on a day near the end of
2020. Pseudo-point locations picked using K-means and marked with orange dots.

Two models were utilised: a simple separable model with a Matérn-5
2

kernel over time, and
Exponentiated Quadratic over space, and a sum of two such kernels with differing length
scales and variances. Additional details in Sec. B.2.2.

Fig. 3.10 compares a simple subset-of-data (SoD) approximation, which is exact when
M = 99, with the pseudo-point (P-P) approximation developed in this work. The results
demonstrate that (i) the pseudo-point approximation has a more favourable speed-accuracy
trade-off than the SoD, offering near exact inference in less time for a separable kernel,
and (ii) a sum-separable model offers substantially improved results over a separable in this
scenario.

92 Combining Pseudo-Point and State Space Approximations

Table 3.1 Performance on apartment price data. Mτ = 75.

RSMSE NPPLP
Separable 0.658 2920

Sum-Separable 0.618 192

3.7.3 Apartment Price Data

Property sales data by postcode across England and Wales are provided by HM Land Registry
(2014). There are over 106 unique postcodes in England and Wales, of which a tiny proportion
contain a sale on a given day. Consequently this data set has essentially arbitrary spatial
locations at each point in time, which our approximation can handle, but which renders the
vanilla state-space method infeasible.

We follow a similar procedure to Hensman et al. (2013), cross-referencing postcodes against a
separate database (Camden, 2015) to obtain latitude-longitude coordinates, which we regress
against the standardised logarithm of the price. However, we train on 843766 of the 1687536
apartment sales between 2010 and 2020, and test on the remainder. We again consider a
separable and sum-separable GP that are similar to those in Sec. 3.7.2, but the temporal
kernel is Matérn-3

2
. More detail in Sec. B.2.3.

Table 3.1 again demonstrates that a sum-separable model is able to capture more useful
structure in the data than the separable model; Fig. 3.11 shows the variability and uncertainty
in the prices on an arbitrarily chosen day.

3.8 Discussion

This work shows that pseudo-point and state space approximations can be directly combined
in the same model to effectively perform approximate inference and learning in sum-separable
GPs, and ties up loose ends in the theory related to combining these models. This is
important in spatio-temporal applications, where the model admits a form of an arbitrary-
dimensional (spatial) random field with dynamics over a long temporal horizon. Experiments
on synthetic and real-world data show that this approach enables a favourable trade-off
between computational complexity and accuracy.

Standard approximations for non-Gaussian observation models, such as those discussed
by Wilkinson et al. (2020), Chang et al. (2020), and Ashman et al. (2020), can be applied
straightforwardly within our approximation. The results of this chapter therefore represent
the simplest point in a range of possible approximations. As such there are several promising

3.8 Discussion 93

paths forward to achieve further scalability beyond simply utilising hardware acceleration,
including (i) applying the estimator developed by Hensman et al. (2013) to our method to
utilise mini batches of data, (ii) embedding the infinite-horizon approximation introduced by
Solin et al. (2018) to trade off some accuracy for a substantial reduction in the computational
complexity of our approximation, (iii) removing the constraint that observations must appear
at the same time as pseudo-points by utilising the method developed by Adam et al. (2020).

Indeed, in the time since the contents of this chapter were published, Wilkinson et al. (2021)
and Hamelijnck et al. (2021) have utilised the results presented to justify their approach to
combining state-space and pseudo-point approximations. In particular, both works consider
non-Gaussian likelihoods, and Hamelijnck et al. (2021) consider mini-batches of data.

Code github.com/JuliaGaussianProcesses/TemporalGPs.jl contains
an implementation of the approximation developed in this work.

github.com/willtebbutt/PseudoPointStateSpace-UAI-2021 contains
code built on top of TemporalGPs.jl to reproduce the experiments.

github.com/JuliaGaussianProcesses/TemporalGPs.jl
github.com/willtebbutt/PseudoPointStateSpace-UAI-2021

Chapter 4

Towards Gaussian Processes for Decadal
Climate Prediction

In this chapter, I investigate the potential for the use of GP-based models to address a variety
of limitations present in techniques used for decadal prediction, the problem of forecasting
properties of the climate 5 to 20 years into the future. I elucidate the techniques that are
currently being used in this field, and how they are related to GP-based models used within
the machine learning community. Some limitations of these techniques, in conjunction with
properties of the data available, motivate the development of a new GP model. This new
GP model retains the core assumptions present in the existing techniques, but removes some
of the limitations. Approximate inference in this new model is not entirely straightforward,
and various approaches are explored, which forms the main contribution of this chapter.
Proof-of-concept experiments on synthetic data are utilised to demonstrate the efficacy of the
approximate inference routines developed. Basic experiments on real sea surface temperature
data indicate that the model is successfully capturing important high-level features of the
climate, suggesting that addressing remaining scalability issues and testing the model on
large-scale decadal prediction experiments will be fruitful.

4.1 The Decadal Prediction Problem

Decadal Climate Prediction (Hawkins and Sutton, 2009b; Meehl et al., 2009) is the study of
the behaviour of the climate over periods somewhere between a couple of years and a couple
of decades into the future, and sits between seasonal and multi-decadal forecasting. It is one

96 Towards Gaussian Processes for Decadal Climate Prediction

of the World Climate Research Programme’s (WCRP’s) seven grand challenges,1, Meehl
et al. (2014) cite water management as an important use-case for decadal predictions, and
Fiedler et al. (2021) highlight that it is an important planning time horizon for a variety of
financial institutions.

Decadal Climate Prediction differs from weather forecasting, seasonal forecasting, and long
term prediction in terms of where it derives its potential predictability. In particular, weather
and seasonal forecasting are driven largely by short term natural variability, such as the
El Niño–Southern Oscillation (ENSO), while long term forecasting on time scales greater
than 20 years or is dominated by anthropogenic climate change. Decadal prediction, on
the other hand, comprises a mixture of the two. Hawkins and Sutton (2009b) analyse the
relative importance of different source of uncertainty for predictions over the 100 years
between 2000 and 2100. They show that the uncertainty about the state of regional climate
on time horizons up to a few decades is driven to a non-negligible extent by natural internal
variability in the climate. Thus a reduction in uncertainty on decadal time horizons might
be achieved by exploiting predictability in this internal variability. The most famous and
pronounced example of internal variability is ENSO. It has been known to be predictable on
a period of up to a year in advance a long time (Kirtman et al., 2002), and improvements in
forecasts at longer time horizons remain a topic of active research – recent developments
utilising modern deep learning techniques increasing this to a year and half (Ham et al.,
2019). ENSO, however, is not hugely relevant on decadal time scales as it is not predictable
on them. Instead, Meehl et al. (2009) point towards a variety of lower-frequency oscillations
in the oceans as a potential source of predictability on decadal time scales. The include the
Pacific Decadal Oscillation (Deser et al., 2004; Mantua and Hare, 2002; Mantua et al., 1997),
the Interdecadal Pacific Oscillation (Power et al., 1999), Atlantic meridional overturning
circulations (Delworth et al., 1993), and the Atlantic Multidecadal Oscillation (Delworth and
Mann, 2000; Kushnir, 1994).

While the potential sources of predictability are to be found in the oceans, the most important
impacts are associated with weather over land. There are, however, links between ocean state
and weather over land. For example, Foland et al. (1986) and Folland et al. (1991) show that
there is a strong relationship between wet and dry periods in the Sahel region of Africa and
global SSTs, with a particularly pronounced relationship with Atlantic SSTs and rainfall over
the Western Sahel, on up to decadal time scales.

1https://www.wcrp-climate.org/grand-challenges/gc-near-term-climate-prediction

https://www.wcrp-climate.org/grand-challenges/gc-near-term-climate-prediction

4.1 The Decadal Prediction Problem 97

4.1.1 Approaches to Decadal Prediction

There are broadly two approaches taken to decadal prediction. One approach involves setting
the initial conditions of a large physics-driven climate simulator to the current state of the
climate, and running it forwards in time for the required duration. For example, this is the
approach adopted by those involved in the Decadal Climate Prediction Project (Boer et al.,
2016). Alternatively, numerous works (Foster et al., 2020; Hawkins et al., 2011; Hawkins
and Sutton, 2009a; Huddart et al., 2017; Newman, 2007, 2013; Zanna, 2012) adopt a more
directly data-driven model, utilising a type of model known as a Linear Inverse Model (LIM),
introduced by (Penland, 1989; Penland and Magorian, 1993; Penland and Sardeshmukh,
1995). This is typically referred to as a statistical approach within the climate literature, in
contrast with an approach based on a physical model of the climate, and it is on this approach
that this chapter focusses.

Let yt ∈ RD be the high dimensional vector of observations associated with some climato-
logical phenomenon for each time t ∈ {1, ..., T}. For example, yt might contain a grid of
sea surface temperature data at time t. That is, the dth element of yt might be the average sea
surface temperature over a small spatial region, at time t. Predictions are made with a LIM
as follows.

Compute Empirical Orthogonal Functions (EOFs). In Machine Learning parlance, the
EOFs are simply the principal components of the collection of data y1:T . They are computed
in the usual manner, by computing the first J < D eigenvectors and eigenvalues of the D×D

empirical covariance matrix associated with y1:T . This produces a collection of J principal
components, hj ∈ RD, and eigenvalues λj > 0. Let H ∈ RD×J be the orthogonal matrix
whose jth column is hj . Let Λ ∈ RJ×J be the diagonal matrix for which Λjj :=

√
λj .

Project Data For each t, compute xt := Λ−1H⊤yt.

Estimate Latent Dynamics Assume that x1:T are generated by the stationary Gauss-
Markov process xt | xt−1 := Bxt−1 + ξt, where ξt ∼ N (0,Q). Since xt is assumed
stationary with 0-mean, the following holds:

C :=E
[
xtx

⊤
t

]
= BCB⊤ +Q,

C1 :=E
[
xtx

⊤
t−1

]
= BC.

This motivates the following procedure to estimate B and Q:

98 Towards Gaussian Processes for Decadal Climate Prediction

1. C←
∑T

t=1 xtx
⊤
t (compute empirical covariance of xt)

2. C1 ←
∑T

t=2 xtx
⊤
t−1 (compute empirical cross-covariance between xt and xt−1)

3. B← C1C
−1

4. Q← C−BCB⊤

Prediction Knowing the model parameters, a single-step ahead prediction is made as
follows:

1. xT+1 | xT ∼ N (BxT ,Q)

2. yT+1 | xT+1 := HΛxT+1

where xT+1 can be marginalised over. Multi-step prediction follows in a similar manner.

There are a few immediate limitations of the above methodology, including:

• complete data is required – the above procedure is not designed to work with missing
data,

• the dth dimension of each yt must correspond to the same measurement location at
different points in time for this approach to be reasonable. This means that roaming
sensor data cannot be handled, and

• piecewise learning of dynamics, meaning that B, Q, H, and Λ are learned somewhat
separately.

However, the following generative model yields the same posterior mean prediction as this
procedure:

xt | xt−1 ∼ N (Bxt−1,S) (4.1)

yt | xt ∼ N
(
HΛxt, σ

2I
)
. (4.2)

This result follows from the orthogonality of H, as discussed by Bruinsma et al. (2020). This
probabilistic model differs, however, in terms of the marginal predictive variance, due to the
σ2I term, and the fact that inference in this model will marginalise over plausible values of
x1:T , while the LIM procedure produces a point estimate for xT , and propagates this forward
through time. This model-based probabilistic interpretation of LIMs provides the starting
point for the model introduced later in this chapter, which addresses all three of the above
limitations.

4.2 Datasets and their Properties 99

Note that, to the best of my knowledge, there has been minimal attention paid to the decadal
prediction problem within the machine learning community. Preliminary work by Rodrigues
et al. (2021) investigates replacing the Gauss-Markov model over x1:T with an RNN, but this
seems to be the extent of the work in the area.

4.2 Datasets and their Properties

Ocean-related data has a long history. It has been gathered in many different ways over the
last 300 years or so, resulting in a highly complicated array of historical data, the details of
which constitute an entire field of study.

There are some fascinating data-related stories. For example, Folland and Parker (1995)
discusses how much of the available data was gathered by ships during the course of other
business, but the manner in which most ships gathered data changed substantially around
1941. Before this point in time, buckets were used to collect ocean water, and a thermometer
used to measure the temperature on the deck of the ship. However, around 1941 practices
changed rapidly, and ships started measuring temperature at their engine intake instead.2

There is an easily-visible jump in the annual average SST measurements in 1941, and
extensive work has been conducted to attempt to deal with this.

This is just one well-known example, but there are many more examples. The presence of
these difficulties means that ocean data is not straightforward, and it would be extremely
challenging to work with raw observational data as a non-expert. This is not to say, however,
that the best choice of data set is necessarily heavily pre-processed, or even one which has
been gridded – climate scientists have produced numerous high-quality data sets containing
oceanographic data with a variety of properties, some of which are not gridded. Since the
properties of the available data sets dictate the kinds of models that can be usefully built, I
investigate below those that are available, highlighting their important properties.

HadISST Rayner et al. (2003) introduce the HadISST data set. One methodology they
utilise in their construction of the data set is that discussed by Kaplan et al. (1997), who
construct a simple low-rank linear dynamical system of the form

xt+1 | xt ∼ N (Axt,Q) (4.3)

yt | xt ∼ N (Htxt,St) (4.4)

2Folland and Parker (1995) suggest that this relates to the risks associated with shining a torch light on deck,
which is required in order to take the measurement, in war-time.

100 Towards Gaussian Processes for Decadal Climate Prediction

Fig. 4.1 HadISST EOFs pre-1945 (top) and post-1945 (bottom). We see that the pre-1945
HadISST data set is half the resolution of the data set post-1945. This is noted in the paper
introducing the data set. Moreover it seems that while the first EOF is fairly stable across time
periods, the second and third differ noticeably (after accounting for arbitrary sign changes).

4.2 Datasets and their Properties 101

where yt is a high-dimensional spatial field at time t, and xt a low-dimensional latent state at
time t, and Ht is a mixture of EOFs and some interpolation terms to handle grid-misalignment
and missing data. A, Q, and St are all estimated in an ad-hoc manner, and are restricted to
be diagonal. The posterior mean of this model is returned as the temperature estimate, and is
computed using RTS smoothing. This methodology is interesting, because it is very closely
related to LIMs, suggesting that it should perhaps be unsurprising if the HadISST data set is
explained well by a small number of EOFs.

Rayner et al. (2003) do not actually use this methodology in isolation – in particular they
drop the temporal dependence in the model due to a paucity of training data, separately
model and subtract the anthropogenic forcing trend in the temperature, utilise different EOFs
at different points in time / space, merge the output of the model with observational data (to
account for a loss of variability due to utilising the posterior mean), and apply some other
quality controls to avoid incorporating corrupted data into the final analysis. If one were to
take a model-based perspective on their procedure, most of these pre-processing steps might
be avoided.

Interestingly, Kaplan et al. (1997) are certainly aware of the model-based / Bayesian inter-
pretation of returning the posterior mean of the above model, specifically highlighting that
the maximum likelihood solution aligns with their smoothing solution when the observation
noise is Gaussian. However, they opt for a frequentist interpretation, citing the well-known
result that smoothing solution / posterior mean is optimal under a wide variety of criteria
(e.g. least-squares) for a range of measurement error distributions.

For the present use-case, HadISST has a number of potential shortcomings. Firstly, it
utilises a substantial amount of pre-processing to produce the data set, and it is unclear
how these techniques will affect the outcome of any analysis that we perform. Secondly,
it provides no quantification of the uncertainties associated with its creation, which is
potentially problematic in data-sparse regions. Moreover, Chelton and Risien (2016) highlight
issues in HadISST, particularly around the centre of the Pacific and changes around 1941.
Another discrepancy is the apparently substantial change in spatial resolution around 1945 –
Fig. 4.1 compares the first three EOFs pre- and post-1945. Arguably the primary advantage
of HadISST is that it lacks missing data, but since this work develops a model that is
straightforwardly able to handle missing data, this advantage is not hugely pertinent here.

HadSST HadSST4 (Kennedy et al., 2019) is an interesting data set, as it is constructed
using only the minimum amount of processing necessary to provide a gridded data set, and
leaves missing data where appropriate. Moreover, unlike HadISST, it provides a careful

102 Towards Gaussian Processes for Decadal Climate Prediction

account of the uncertainties associated with the data, which are especially important at points
in time / space with few observations. Sufficient detail is provided in the user-manual about
the interpretation of these uncertainties to mean it is plausible to utilise them as part of a
measurement model in a probabilistic model.

ICOADS The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) (Free-
man et al., 2017) is a vast database, containing surface marine measurements starting in 1662.
It is used as a component in the construction of numerous other data sets. Ship records form
the bulk of historical measurements, but in recent times many other sources of data have
become available. It is quite a low-level data set, with little more than the raw data available.

EN4 Good et al. (2013) introduce EN4, the fourth version of a dataset containing in situ
temperature and salinity profiles. It provides two data products: profiles and analysis. The
profiles are obtained from a variety of sources, and have a collection of sanity checks applied
(removal of duplicates, clearly-erroneous temperature / salinity measurements, large jumps
in values, etc).

HadIOD Atkinson et al. (2014) introduced the Hadley Integrated Ocean Database (Ha-
dIOD). It is drawn from ICOADS and EN4, and comprises in situ temperature and salinity
measurements at a variety of depths, and has a range of quality controls applied (see Ingleby
and Huddleston (2007) for details). Version 1 of the dataset spanned 1900 to present, but was
extended in version 1.2 to cover 1850 to present (amongst other things) by Brönnimann et al.
(2018), and it is updated on a regular basis. The in situ nature of the data necessitates the use
of statistical models which can work directly on this off-the-grid roaming sensor data.

While the data is highly detailed, the authors of the data set have gone to great lengths to
make it simple for those outside the measurement community to understand and work with,
applying a range of quality checks and summarising a large amount of domain expertise about
biases in the data and their uncertainties for every single observation. As with HadSST3 and
HadSST4, their documentation provides enough detail to construct measurement-specific
observation models.3 It is a truly remarkable data set.

Each measurement y is a small model of the form

y = f + εM + εm + ε (4.5)
3https://www.metoffice.gov.uk/hadobs/hadiod/HadIOD.1.2.0.0_Product_

User_Guide_[1.1].pdf

https://www.metoffice.gov.uk/hadobs/hadiod/HadIOD.1.2.0.0_Product_User_Guide_[1.1].pdf
https://www.metoffice.gov.uk/hadobs/hadiod/HadIOD.1.2.0.0_Product_User_Guide_[1.1].pdf

4.2 Datasets and their Properties 103

where f is the true unobserved value, εM is an error associated with all measurements made
with the same device / platform as y (a particular kind of bucket, engine room inlet, XBT,
Argo float, etc), εm is an error associated with the particular platform used to make the
measurement (a particular ship, XBT, Argo float, etc), and ε is independent noise associated
with this particular measurement.

The manner in which the uncertainties are provided varies. ε is characterised by a standard
deviation, and is assumed to be a zero-mean Gaussian with this standard deviation. εm

is characterised by a “correction” (bias) and a standard deviation for this bias – again the
authors advise that it can be assumed to be Gaussian in most cases, but will sometimes be a
poor approximation to the true uncertainty. εM is provided in the form of an ensemble of
different corrections (roughly 300 samples) – this is perhaps the most tricky representation
of uncertainty to handle in a probabilistic model. One possible probabilistic interpretation of
the above is

εM,p ∼ S−1

S∑
s=1

δ(cs) (4.6)

εm,q ∼ N
(
cq, ν

2
q

)
(4.7)

yn | fn, εM,1:P , εM,1:Q ∼ N
(
fn + εM,p(n) + εm,q(n), σ

2
n

)
(4.8)

where

• there are P platform types and εM,p denotes the error associated with the pth,

• δ(x) denotes a delta distribution / atom centred at x,

• there are S ensemble members used to express uncertainty about εM,p,

• cs is the correction in the sth of them,

• there are Q platforms and εm,q denotes the error specific to the qth,

• cq is the bias quoted for the sth platform, and νq its standard deviation,

• fn is the nth true unobserved temperature,

• yn is the nth temperature measurement,

• p(n) and q(n) are the platform type and platform index associated with the nth obser-
vation,

• σn is the standard deviation quoted for the independent noise associated with the nth

observation.

104 Towards Gaussian Processes for Decadal Climate Prediction

This model respects the relationship between the biases associated with each observation,
and appears tractable – Eq. (4.6) is just a finite discrete mixture, so it can be marginalised via
summation. An analogous model could be constructed for the salinity data.

In addition to this error-related data, latitude, longitude and depth are provided for each
measurement, and an uncertainty estimate for depth is provided.

4.3 The Infinite Linear Mixing Model

The availability of high-quality in situ data in the HadIOD data set, and the relationship
between LIMs and the probabilistic model given in Eq. (4.1) and Eq. (4.2), suggests that one
might be able to specify and train / perform inference in a generalisation of this probabilistic
model which operates in continuous-space but retains core components of LIMs. The inability
of LIMs to handle roaming sensor data and the patchy coverage of historical ocean data
suggest that building such a model, and propagating uncertainty information throughout it,
might be fruitful. Such an approach would be able to make use of all available data, and
the consistent propagation of uncertainty obtained by performing approximate Bayesian
inference should result in a model with an appropriate degree of belief in its predictions, up
to model mis-specification.

To that end, consider the following probabilistic model:

xj ∼GP
(
0, κτ

j

)
, j ∈ {1, ..., J},

hj ∼GP
(
0, κr

j

)
, j ∈ {1, ..., J}

x(τ) := (x1(τ) , ..., xJ(τ)),

h(r) := (h1(r) , ..., hJ(r))

f((r, τ)) := ⟨h(r) , x(τ)⟩ (4.9)

yn | f ∼N
(
f((rn, τn)) + bn, σ

2
)
, n ∈ {1, ..., N}. (4.10)

Here, a sample from xj maps R→ R, and a sample from hj maps R2 → R. Consequently, a
sample from f maps T(R2,R)→ R, where T(A,B) denotes the set of all tuples of the form
{(a, b) : a ∈ A, b ∈ B}. bn is an observation-specific bias obtained from the HadIOD data
set, and σ > 0.

In this model, x(τ) corresponds to xt in the LIM – x1:J gives the evolution of a collection of
J latent processes through time. Similarly, samples from h1:J provide continuous-in-space
basis functions, generalising HΛ in the LIM, and enabling predictions to be made anywhere

4.3 The Infinite Linear Mixing Model 105

in space. Thus this model retains the key inductive bias in the LIM, that the data can be
explained at any given point in time through a time-varying linear combination of bases.
However, by generalising the model to continuous space roaming sensor data in HadIOD can
be utilised. Moreover by placing a prior over h and performing approximate inference in it,
uncertainty about it can be propagated through to predictions.

The joint distribution over x, h, f and y1:N is not Gaussian, owing to f being the inner
product between x and h. However, the conditionals x, f, y1:N | h and h, f, y1:N | x are both
Gaussian, leading to the following two important formulations of the conditionals.

Basis-Given-Latent Formulation The conditional distribution over h and f given x can
be expressed as simple two-layer GPPP:

h ∼ GP(0, κr) , (4.11)

f = Lxh, (4.12)

where Lx is the linear transformation given by

(Lxh)((r, τ)) := ⟨h(r) , x(τ)⟩, (4.13)

and, in order to simplify notation, h1:J have been compressed into a single multi-output GP
h with kernel κr : T({1, ..., J},R2)× T({1, ..., J},R2)→ R, given by

κr((j, r), (j′, r′)) =

κr
j(r, r

′) j = j′

0 otherwise
.

h is an atomic process, so no further work is required to incorporate it into the GPPP
abstraction. However, Lx is a linear transformation that has yet to be encountered, so it must
be analysed.

Recall from Chapter 2 that the domain of a GPPP comprises tuples. Since the domain of
Lxh itself comprises tuples, if Lxh is the P th component in a GPPP, then it can be addressed
using a nested tuple: (P, (r, τ)).

106 Towards Gaussian Processes for Decadal Climate Prediction

Assume that Lx is applied to the pth process in a GPPP. Assuming that the pth process is
multi-output, it has mean function, kernel, and cross-kernels as follows:

mp((j, r)) :=m((p, (j, r))) ,

κp((j, r), (j
′, r′)) :=κ((p, (j, r)), (p, (j′, r′))) ,

κpq((j, r), x
′) :=κ((p, (j, r)), (q, x′)) .

Since it is a multi-output process, we can further associate to it the following vector-valued
mean function and cross-covariance function, and matrix-valued covariance function:

m : R2 → RJ , where m(r)j := mp((j, r)) ,

cq : R2 ×Xq → RJ , where cq(r, x
′)j := κpq((j, r), x

′) ,

C : R2 × R2 → RJ×J , where C(r, r′)jj′ := κp((j, r), (j
′, r′)) .

Given the above, the concrete expressions for Eq. (2.17), Eq. (2.18), and Eq. (2.19) in the
context of Lx are

m′((P, (r, τ))) = ⟨x(τ) ,m(r)⟩,
κ′((q, x), (P, (r′, τ ′))) = ⟨cq(r, x) , x(τ)⟩,

κ′((P, (r, τ)), (P, (r′, τ ′))) = x(τ)⊤C(r, r′)x(τ ′) .

The benefit of treating this as a GPPP is precisely as discussed in Chapter 2 – existing
software for pseudo-point approximations can be straightforwardly utilised within this GPPP.

One potential problem with this formalism is that implementing it in a generic manner
requires access to x at any τ . In practice, this is not a problem as the data occurs in discrete-
time, meaning that it is possible restrict τ to be a natural number, and produce samples from
x for all relevant times.

Latent-Given-Basis Formulation The conditional distribution over x and f given h can
also be expressed as a small GPPP:

x ∼ GP(0, κτ) , (4.14)

f = Lhx, (4.15)

4.3 The Infinite Linear Mixing Model 107

This model is completely symmetric to the previous, in the sense that simply replacing the
κτ with κr, x with h etc everywhere produces all of the above results.

Related Models There are a couple of models in the GP literature which are closely related
to this model. The first is the Linear Mixing Model (LMM), of which the above can be
seen as a generalisation to infinitely many outputs. The LMM is itself a small generalisation
of the Linear Model of Coregionalisation introduced by Goovaerts (1997), which is an
extensively-utilised multi-output GP model – see Bruinsma et al. (2020) for a review. It has
P outputs, and is given by

xj ∼GP
(
0, κτ

j

)
, j ∈ {1, ..., J},

x(τ) := (x1(τ) , ..., xJ(τ)),

f((p, τ)) := ⟨h(p), x(τ)⟩, p ∈ {1, ..., P},
yn | f ∼N

(
f((pn, τn)) + bn, σ

2
)
, n ∈ {1, ..., N},

for a collection of P basis vectors hp ∈ RJ . The Infinite Linear Mixing Model is obtained
from the Linear Mixing Model by replacing the integer index p with the continuous spatial
index r, and generalising h to be a function which is continuous in space.

While a point estimate of each hp is typically obtained for the Linear Mixing Model, a
prior is placed over h in this work. For one, some form of regularity must be imposed
upon h as it comprises infinitely many vectors (one for each point in space), and a GP prior
offers that. Additionally it will be important to infer the characteristic length scale of the
spatial bases directly from data. This is straightforwardly done using the ELBO if variational
inference is performed over h, but will necessitate a tricky hyperparameter search algorithm
if a ridge-regression style point estimate is obtained.

Note that while the above discussion focuses on LMMs with multiple outputs but only a
single temporal dimension, they trivially extend to higher-dimensional domains by replacing
each xj with processes defined on the higher-dimensional domain. Precisely the same
mechanism could be used to extend the Infinite Linear Mixing Model to higher dimensions.
For example, for the domain R4, two dimensions could be associated with xj and two with
hj . This would induce an interesting restricted class of conditionally-Gaussian model, which
may be of general interest, but which is not considered here.

108 Towards Gaussian Processes for Decadal Climate Prediction

The Infinite Linear Mixing Model is a special case of the Gaussian process Regression
Network (GPRN) developed by Wilson et al. (2012). The GPRN is given by

xj ∼GP
(
0, κτ

j

)
, j ∈ {1, ..., J},

hpj ∼GP
(
0, κr

pj

)
, p ∈ {1, ..., P}

x(x) := (x1(x) , ..., xJ(x)),

h((p,x)) := (hp1(x) , ..., hpJ(x))

f((p,x)) := ⟨h((p,x)) , x(x)⟩,
yn | f ∼N

(
f((pn, τn)) + bn, σ

2
)
, n ∈ {1, ..., N}.

In effect, it is an LMM in which the basis vectors vary as a function of the input. Letting
P = 1, x := (r, τ), if one restricts x to depend only on τ , and h only on r, the Infinite Linear
Mixing Model is recovered. Inference in the GPRN is known to be tricky, however, since
the LMM is substantially simpler, one would hope that approximate inference will prove to
be more straightforward. For example, the partition of the dimensions should mean that the
number of pseudo-points required to provide good coverage of the spatial bases does not
grow as more data is gathered through time. Conversely, the number of random variables in
which inference must be performed in x does not grow if the spatial extent increases. Neither
of these is true in the general GPRN case.

From the perspective of approximation inference, a key feature of the model considered here
is the presence of the product of GPs. This basic kind of conditionally-Gaussian structure
seen in the Infinite Linear Mixing Model occurs in a couple of other places in the literature.
Tobar et al. (2015) and Bruinsma et al. (2022) consider a model in which both processes
range through time, and convolve one against the other to produce a new process. They
show that a Gibbs sampling procedure can be developed which samples from the optimal
variational approximate posterior over the two processes, from which an estimator for the
gradient of the log marginal likelihood w.r.t. the hyperparameters can be obtained. They note
that this works extremely well in the problems they consider, but they only utilise a small
number of data points. Consequently, given the need for the use of mini batches of data in
the present work, their results are not obviously immediately transferable.

One important lesson from their work is that a mean-field approximation, in which the
approximate posterior factorises across processes (i.e., q(x, h) := q(x) q(h)), is unlikely to
provide a good approximation.

The rest of this section explores the various approaches one could take.

4.3 The Infinite Linear Mixing Model 109

4.3.1 Approximate Inference

Exact inference in all of the components of the Infinite LMM is intractable and, since the
HadIOD data set comprises hundreds of millions of observations in total, exact inference will
not be feasible in the conditionals. Rather, it is necessary to find a posterior approximation in
a manner which permits utilising mini batches of the observational data. The best approach
available for this remains the sparse variational pseudo-point approximation discussed in
Chapter 1. Consequently, any approximate inference algorithm will need to be built around
this kind of approximation in some way.

Having chosen to utilise the variational pseudo-point approximation, there are numerous
choices to be made about the details which have a substantial impact on the performance,
and are discussed below.

Mean Field The most naïve parametrisation considered here for the approximate posterior
is to factorise it across the two latent GPs: q(x, h, f) := q(x) q(h) p(f |x, h). Each factor
is separately approximated using a pseudo-point approximation. In particular q(x) utilises
the Conjugate Computation Variational Inference (CVI) technique developed by Khan and
Lin (2017), recently considered in the context of pseudo-point GP approximations by Adam
et al. (2021), while q(h) utilises the centred parametrisation introduced in Sec. 1.3.2, with
the pseudo-observation covariance matrix restricted to be diagonal. The ADAM optimiser
(Kingma and Ba, 2015) with a learning rate of 10−2 is utilised to optimise the parameters of
q(h) and all kernel parameters, while natural gradient ascent is utilised for the parameters of
q(x), as per Adam et al. (2021).

The ELBO is computed making use of the latents-given-bases GPPP formulation of the
model, as this was easy to implement as it minimised the amount of code which needed to be
written. A differentiable Monte Carlo estimator for the ELBO is constructed. It specifically
makes use of

L(φ, θ) = L̂inner(h, φ, θ)−KL[q(u;φ, θ) ||p(u; θ)] , h ∼ q(h) , (4.16)

where L̂inner is the standard estimator for the unsaturated ELBO, presented in Eq. (1.17),
applied to the latents-given-bases conditional model shown in Eq. (4.14) and Eq. (4.15).
Pseudo-inputs are located in x, the component of the GPPP, but not the second, f .

Latents-given-Bases Coupled Approximation A more sophisticated approximation
utilises the same q(h) as above, but conditions the posterior over x on h. Since the prior

110 Towards Gaussian Processes for Decadal Climate Prediction

distribution over x given h is a GP, and the observation model is Gaussian, for small data
sets it is possible to perform exact inference. In this situation, it is possible to simply let
q(x, f |h) := p(x, f |h,y) (i.e., the exact posterior of the first GPPP above), which is the
best possible choice. However, the complexity of ELBO computation under this choice for
q(x, f |h) is linear in the number of observations, which is prohibitive for large data sets
such as the one under consideration here. Consequently, this choice provides only a good
baseline against which to compare other methods in small scale settings.

So instead of conditioning on y, one could condition on a small pseudo-observational data
set, and let q(x, f |h) be the exact posterior given this pseudo-observational data set. The
existing formulations for pseudo-observation approximations discussed in Sec. 1.3, however,
tie the location of the pseudo-observations to those of the pseudo-points, which is problematic
in this setting for the following reasons.

On the one hand, if pseudo-points are placed in x, the useful size of the pseudo-observation
data set in this particular setting is strictly limited. To see this, consider that there are a
total of JT unique dimensions of x of which any indirect observation is made owing to
making observations in discrete time at a total of T unique time points. Therefore, the
number of pseudo-points which can usefully be placed in x is JT . Worse still, placing
pseudo-observations and pseudo-points in x yields a mean-field approximation, because the
prior over x is not a function of h. The only other place to locate the pseudo-points is in f .
However, this is again sub-optimal for precisely the computational reasons discussed in the
context of additive GPs in Sec. 2.6.1.

Instead, one could decouple the inputs associated with the pseudo-observations from the
inputs associated with the pseudo-points. Placing pseudo-observations in f and pseudo-
points in x should achieve the best of both worlds, yielding an approximate posterior in
which x, f , and h are all coupled, but with better computational properties than placing both
pseudo-points and pseudo-observations in f .

To see how this is achieved in general, abstract away the details of this particular problem,
and instead consider the standard GP regression problem. Let f be a GP with domain X ,
y ∈ RN a vector of observations made under Gaussian observation noise with variance σ2 at
locations x ∈ XN , and z ∈ XM a collection of M pseudo-inputs. Letting u := f(z) as usual,
we face the question of how to parametrise q(u). The pseudo-observation parametrisation
discussed in Sec. 1.3.2 ties the location of the pseudo-observations to line up precisely with
the pseudo-points.

4.3 The Infinite Linear Mixing Model 111

Consider an additional set of L pseudo-observation inputs w ∈ X L and associated random
variables v := f(v), pseudo-observations ŷ ∈ RL, and a pseudo-observation covariance
Sŷ ∈ SL

+. Let q(u) be the optimal approximate posterior given this pseudo-observation data
set, which by substituting the above into Eq. (1.22) is

q(u) ∝ N (ŷ;CvuΛuu,Sŷ) p(u) . (4.17)

If L > M , this parametrisation introduces some redundancy if ŷ and Sŷ are not further
constrained. In practice, Sŷ will be constrained to be diagonal, as this means that computing
q(u) requires only O(LM2 +M3) operations. I refer to this approximation as a Decoupled
Pseudo-Observation (DPO) Approximation, because the location and number of pseudo-
observations is not tied to the location and number of pseudo-points.

In the present work, z reside in x, the first component process of the GPPP p(x, f |h), while
w reside in f .

Having established the parametrisation of the approximate posterior, an optimisation scheme
must be devised for it. The preferred option is natural gradient ascent. Recall that natural gra-
dients w.r.t. the natural parameters of an exponential family are simply the Euclidean gradient
w.r.t. the expectation parameters, so if a given q is an exponential family, and it is straight-
forward to convert between the natural and exponential parameters, it is straightforward to
compute the natural gradient w.r.t. the natural parameters.

However, while the conditional distribution q(x |h) and marginal distribution q(h) are
Gaussian, the joint approximate posterior q(x, h) does not form an exponential family, and
it is the joint for which the natural gradient is needed. This makes it very hard to compute
the natural gradient, as the entire Fisher information matrix is required. For all intents and
purposes, this rules out performing natural gradient ascent w.r.t. the variational parameters in
q(x, h).

One might consider performing natural gradient ascent w.r.t. just the variational parameters
of the marginal distribution q(h), however, some difficulties are again encountered owing
to the requirement that the covariance matrix associated with the pseudo-points be positive
definite. To see this, recall that in the Gaussian case it is straightforward to perform natural
gradient descent provided that the reconstruction term, or estimator thereof, of the ELBO is
log-concave in the latent variable over which q is distributed. This property ensures that the
natural gradient is always positive definite, so provided that the second natural parameter is
initialised to be positive definite, it will stay that way. However, if it is not log-concave, it is
possible to take gradient steps which do not yield a positive-definite result. This necessitates

112 Towards Gaussian Processes for Decadal Climate Prediction

some additional complications to the gradient ascent procedure (Salimbeni et al., 2018)
which are only known to work well in the case of GP models with simple non-Gaussian
likelihoods, and in that case seems to requires careful learning rate scheduling. It is unclear,
therefore, whether it would be possible to get it to work well in this much more complicated
setting. In this setting L̂inner acts as the reconstruction term for q(h), and it is not log-concave.

In the end, I opt to utilise the ADAM optimiser with learning rate 10−2 with this parametrisa-
tion, for all variational and model parameters.

The structure of this approximation family is intimately related to that utilised by Ober and
Aitchison (2021) in the context of Deep GPs. Let flj ∼ GP(0, κlj) be the GP producing
the jth activation at the lth hidden layer of a Deep GP. The approximate posterior over the
pseudo-points u associated with this GP, given all of the previous layers, is

q(u) ∝ N (ŷ;u,Sŷ)N (u;0,Cu(ul−1,1:J))

where ŷ ∈ RM and Sŷ ∈ SM
+ , and ul−1,1:J are all of the pseudo-points at the (l − 1)th layer.

Note the explicit dependency of the pseudo-point covariance matrix Cu on the pseudo-points
from the previous layer. In this case, this dependency is one of composition – the inputs to the
kernel used to construct Cu are the pseudo-points in the previous layer. On the other hand,
the model presented in this chapter has a multiplicative dependence. Moreover, note that the
number of pseudo-observations in this approximation are observations of the pseudo-points,
as opposed to being decoupled from them.

Bases-given-Latents Coupled Approximation The bases-given-latents formulation has
precisely the same structure as the latents-given-bases formulation, so a conditional parametri-
sation in the opposite direction can also be made, in which q(x) and q(h, f |x) are directly
parametrised. To achieve this for q(h, f |x), a pseudo-point approximation can be applied
to the GPPP specified in Eq. (4.14) and Eq. (4.15). The same considerations as before
apply to the placement of pseudo-points, so a DPO approximation is again used. A standard
pseudo-point approximation using the non-centred parametrisation is made to x.

4.4 Results

This section contains a collection of proof-of-concept experiments on synthetic data generated
from the Infinite LMM, and a subset of HadIOD.

4.4 Results 113

-80 -60 -40 -20 0 20

-50

0

50

Fig. 4.2 Spatial mask applied to remove any data that lives outside of the Atlantic, or outside
of [−60, 70] degrees latitude, and [−80, 20] degrees longitude. Observe that the Mediteranian
Sea, South East Pacific, and Southern Ocean are excluded.

General Experimental Details The following details the conditions used in all experi-
ments in this chapter. Firstly, only observations located between [−60, 70] degrees latitude,
[−80, 20] degrees longitude are retained, and which reside within the Atlantic Basin are
retained. Fig. 4.2 depicts this region.

In all experiments, Exponentiated Quadratic kernels are used in the priors over both x and
h. J = 3 is used for all experiments. Initial length scales for (x1, x2, x3) are (10, 5, 1)

respectively. The kernels for h are ARD, and have two length scales each – the initial length
scales for (h1, h2, h3) are ((1

2
∆lat,

1
2
∆lon), (

1
4
∆lat,

1
4
∆lat), (

1
8
∆lat,

1
8
∆lat)) where ∆lat := 130 =

70 + 60 and ∆lon := 100 = 20 + 80. The variance of each xj is initialised to 1
J

and learned,
while that of each hj is fixed to 1 to avoid redundancy in the parametrisation.

100 pseudo points are used per-basis and are located on a fixed regular Cartesian grid,
covering [−60, 70] degrees latitude and [−80, 20] degrees longitude. This means that there
are a total of 100J pseudo-points in the bases. This introduces some redundancy in the
pseudo-input placement as data is only present over the ocean, and roughly half of these
pseudo-inputs are located over land. For the sake of the experiments in this chapter, the most
important thing is to have enough pseudo-inputs – careful optimisation of their placement is
left for future work.

114 Towards Gaussian Processes for Decadal Climate Prediction

Where DPO approximations are made, a total of 10T pseudo-observations are utilised, 10 at
each point in time. The spatial locations of the inputs associated to these pseudo-observations
are sampled uniformly at random from the grid of pseudo-points, independently at each point
in time. The pseudo-observation covariance matrix is restricted to be diagonal.

Wherever a standard pseudo-point approximation is utilised to either q(h) or q(x), the
non-centred parametrisation is adopted, and the covariance matrix restricted to be diagonal.

Wherever pseudo-points are placed in x, there are a total of JT of them – one for each
process at each point in time that it is observed. Observation variance σ2 is initialised to 1

10
.

4.4.1 Synthetic Data Experiments

This section comprises some basic checks on the performance of the various approximate
inference algorithms in a situation where the ground truth is known.

Minature Data Set, No Learning This first synthetic experiment utilises a total of 1500
observations, 100 at each of 15 time points. Spatial inputs are chosen randomly. In this
experiment, the data is sampled from the prior described above, and the model parameters
(length scales and observation variance) are kept fixed. This is to isolate the variational
inference from learning the model parameters.

Five approaches to approximate inference are investigated:

• Mean-Field: this is included as a baseline.

• Exact-Latent-given-Bases (Exact-LGB): this approximation utilises q(f, x |h) :=

p(f, x,y |h).

• DPO-Latent-given-Bases (DPO-LGB): same as Exact-Latent-given-Bases, but the
exact posterior is replaced with a DPO approximation.

• Exact-Bases-given-Latent (Exact-BGL: this approximations utilises q(f, h |x) :=

p(f, h,y |x).

• DPO-Bases-given-Latent (DPO-BGL): same as Exact-Bases-given-Latent, but the
exact posterior is replaced with a DPO approximation.

The Exact-LGB and Exact-BGL approximations are only possible in this example because
of the small size of the data set. This makes it possible to isolate the quality of q(f, x |h) and
q(f, h |x) relative to the best possible choice – the exact posterior.

4.4 Results 115

15000 steps of ADAM were performed in each method, and Fig. 4.3 indicates that conver-
gence has been achieved for all approximate inference algotithms. As expected Mean-Field
attains the lowest ELBO, and the various coupled methods all perform better. In particular
Exact-LGB and DPO-LGB appear to perform very similarly, while there is a small gap
in performance between Exact-BGL and DPO-BGL. The former suggests that the DPO
approximation is providing a good approximation to the exact conditional distribution over
f, x | h,y, while the latter approximation is less accurate relative to the exact distribution
f, h | x,y.

Iteration
0 5.00×10³ 1.00×10⁴ 1.50×10⁴

-E
LB

O

750

1000

1250

1500

1750

Exact-LGB

Mean-Field

DPO-LGB

Exact-BGL

DPO-BGL

Fig. 4.3 Learning curves for variational inference with no parameter learning. Convergence is
attained in all cases well before 15000 iterations have occured. Mean-Field takes the longest
to converge and has the lowest ELBO at convergence.

Fig. 4.4 depicts the samples drawn from h in order to generate the data, and Fig. 4.5 shows
the posterior mean of the bases inferred by a subset of the approximate inference algorithms:
Mean-Field, DPO-BGL, and DPO-LGB. In all cases, approximate inference appears to have
done a good job of recovering the sample from h via its posterior mean, up to a change
of sign. It is partcularly noteworthy that the third basis has been recovered, as this has the
highest-frequency component, presumably being the hardest to recover.

Minature Data Set, With Learning This second synthetic experiment utilises precisely
the same set up as the previous, but optimises both the variational parameters and model
parameters. Fig. 4.6 shows the learning curves in this case. The qualitative features are the
same as before, albeit all algorithms take longer to converge.

116 Towards Gaussian Processes for Decadal Climate Prediction

-60 -30 0

-50

0

50

-60 -30 0 -60 -30 0
-4

-2

0

2

4

Fig. 4.4 The true unobserved bases sampled from the prior.

Similar results are obtained for the bases as in the previous experiment. That the bases are
accurately recovered when the model parameters are learned provides some confidence that
approximate inference is working reasonably well.

4.4.2 HadIOD

The following experiments were conducted in order to demonstrate that some basic qualitative
properties of the climate are recovered by performing approximate inference in the model. A
subset of 106 data were chosen uniformly at random without replacement from the HadIOD
dataset between the years 2000 to 2010, and grouped by month. A single approximate
inference scheme was utilised, the DPO-LGB. This is because in practice it seems to be
substantially faster to execute, and this experiment is already pushing the limits of the
scalability of the algorithm. For example, with the subset of HadIOD utilised and J = 3,
roughly 2× 105 iterations were required to attain convergence, taking roughly 12 hours to
run. These scalability issues are discussed further in the next section.

Fig. 4.7 shows the progress of training. The ELBO appears to converge after around 105

iterations, although owing to the non-convexity of the problem it is not clear whether this is
the global minimum.

Figure Fig. 4.8 again shows the posterior mean of h, while Fig. 4.9 shows samples from
the posterior distribution over x. They suggest that the first two components of the model
account for slowly varying high-level features of variability in the climate over time, while
the third component appears to account for annual periodicity. It is interesting that the
approximate posterior over the latents is as concentrated as it is. There are two possible
explanations for this – either the exact posterior is highly concentrated, and the concentration

4.4 Results 117

-60 -30 0

-50

0

50

-60 -30 0 -60 -30 0
-4

-2

0

2

4

-60 -30 0

-50

0

50

-60 -30 0 -60 -30 0
-4

-2

0

2

4

-60 -30 0

-50

0

50

-60 -30 0 -60 -30 0
-4

-2

0

2

4

Fig. 4.5 Bases inferred using approximate inference. There is some variation in the first
basis, but the structured recovered is broadly the same for all of them, up to a change of sign.
Top: Mean-Field. Middle: DPO-LGB. Bottom: DPO-BGL. Similar results are obtained for
Exact-LGB and Exact-BGL as for DPO-LGB and DPO-BGL respectively.

118 Towards Gaussian Processes for Decadal Climate Prediction

Iteration
0 5.00×10³ 1.00×10⁴ 1.50×10⁴

-E
LB

O

750

1000

1250 Exact-LGB

Mean-Field

DPO-LGB

Exact-BGL

DPO-BGL

Fig. 4.6 Learning curves for variational inference and parameter learning. Convergence
is attained in all cases well before 15000 iterations have occured. Mean-Field again takes
longer than before to converge, and has the lowest ELBO at convergence. All methods take
longer to converge than when the model parameters are fixed, as expected.

Iteration
0 1.0×10⁵ 2.0×10⁵

-E
LB

O

0

2.0×10⁵

4.0×10⁵

DPO-LGB

Fig. 4.7 DPO-LGB learning curve.

of the latents under the approximate posterior accurately reflects this, or the approximate
posterior is overly concentrated as a conseqeuence of some types of approximation error.
Given that there are 106 observations utilised, it seems quite plausible that the exact posterior
would be this concentrated, although more investigation is required to know for sure.

4.4 Results 119

-60 -30 0

-50

0

50

-60 -30 0 -60 -30 0

-10

0

10

20

30

Fig. 4.8 Posterior mean over h. Scale is in degrees celsius.

0 50 100
-1.0

-0.5

0.0

0.5

1.0

0 50 1000 50 100

Fig. 4.9 Samples from the posterior over x. j = (1, 2, 3) correspond to black, blue, and
red respectively. Note the periodicity in the x3, and the degree to which the posterior is
concentrated.

Fig. 4.10 gives a sense of the extent to which the model has picked up on annual periodicities
and longer-term fluctuations in climate, in addition to how well it is able to reproduce some
areally-averaged temperatures. For example, the time series associated with regions 1 and
5 have annual periodicities, but are entirely out of phase with one another. This is to be
expected, as the regions 1 and 5 reside in opposite hemispheres. Regions 2 and 4 show
a similar pattern, although the amplitudes of their peiodicities are smaller. Their average
temperature is also higher, which is also to be expected as they reside in the tropics.

120 Towards Gaussian Processes for Decadal Climate Prediction

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

Month
0 50 100

d
e
g

C

10

15

20

25

Month
0 50 100

d
e
g
C

10

20

30

Month
0 50 100

d
e
g
C

10

20

30

1: NA (North)

2: NA (Tropics)

3: Equatorial Strip

4: SA (Tropics)

5: SA (South)

1 2 3 4 5

Fig. 4.10 Time series of performance of the model in 5 regions. Top left: the five regions of
the Atlantic considered. Top right: Spatially-averaged prediction in each region. Bottom left:
average prediction at training data (solid line) and observed mean of training data (dashed
line) in each region in each month. Bottom right: same as bottom left, but for test data.

Fig. 4.10 also gives a sense of the model’s ability to reproduce the average temperature in a
given region, when compared to real data. This is shown in the bottom half of the figure – the
graphs are noisier due to sampling variability, but they tell a clear story. The model’s central
belief about regionally averaged temperature is broadly consistent with what is observed.

4.5 Conclusion 121

4.5 Conclusion

This chapter has developed a probabilistic model – the Infinite Linear Mixing Model – which
removes some of the limitations of existing statistical models utilised for decadal prediction,
while retaining the central assumption that the observed data can be explained by a time-
varying linear combination of spatial basis functions. However, approximate inference in this
model is challenging, particularly at the scale required in order to fully utilise the available
oceanographic data. To this end, a Decoupled Pseudo-Observation approximation was
developed which goes part of the way to providing an accurate and scalable approximate
inference algorithm for this model. In particular, it enables the use of an estimator requiring
only mini-batches of observations in order to perform stochastic gradient descent in the
variational and model parameters, while retaining strong dependencies between x and h. A
collection of simple experiments were conducted on synthetic and real-world sea surface
temperature data, to qualitatively validate the approach to approximate inference introduced.
The results suggest that the model is able to pick up on some important high-level structure
in the climate, and reproduce spatially-averaged temperatures well.

While this approximation is scalable in terms of the total number of observations, it does
not currently scale well to time periods longer than around ten years, and takes a long time
to train on even ten years. In order to test the proposed model on HadIOD in a sufficiently
rigorous manner for decadal prediction, it will need to be trained on at least a hundred years
of data, as much less than this will make it hard to pick up on sufficiently long-term signals
in the data. Consequently, given that the model appears promising, these scalability issues
should be addressed. It may be sufficient simply to both utilise state-space approximations to
perform inference in x and to make use of hardware acceleration – both of these will reduce
the time taken per step of gradient descent in the ELBO. Once these scalability problems
have been addressed, it will be possible to utilise the model to perform hindcast experiments,
and compare the predictions made by this model to those of competing approaches.

Chapter 5

Discussion

This thesis presents some new approaches for scaling up GPs to large spatio-temporal settings,
and a new approach to the design of software to support these. Each of the preceding chapters
provided a localised summary, so I take the opportunity below to step back and take a broader
view of the themes tackled in this thesis, and what I believe the large open problems to be.

The Role of Software in Machine Learning and Probabilistic Modelling As alluded to
in Chapter 1, most research in machine learning and probabilistic modelling necessarily
focuses on methodological development. However, I do not believe it to be controversial to
assert that composable software abstractions are a vitally-important factor in the successful
adoption of new techniques. For example, it is hard to imagine how Deep Learning would
have reached its present level of success without the array of composable tools available
to researchers today.1 For example, without algorithmic differentiation it would take a
much greater deal of time for a Deep Learning research to go from idea to implementation.
Similarly, domain experts often need to tweak architectures to suit their particular needs,
which would be extremely difficult for most to achieve if hand-coded code for differentiating
their network were required.

It is this type of reasoning that motivated Chapter 1 – a desire to narrow the gap between
what ought to be easily achievable in practice and what actually is. That most GPs are
built from affine transformations, and that one can in principle condition on observations,
perform inference, or place pseudo-points in any part of a model, is well understood by
GP researchers. However, it has remained somewhat difficult to utilise all of these facts in

1This is of course not the only reason for the widespread adoption of Deep Learning – it is also happens to
be able to solve a variety of important problems for which no good solutions existed a decade ago.

124 Discussion

practice, despite their conceptual simplicity. I believe that Stheno.jl does indeed narrow
this gap somewhat, although there are plenty of practical (improving the robustness and
performance of the software) and algorithmic problems left to solve.

GPs in Spatio-Temporal Models There remains a large amount of work to do in order to
enable the routine use of GPs in large messy real-world spatio-temporal problems. While it
is the case that approximations exist for simple large-scale spatio-temporal problems, with
domains comprising at most 2 or 3 dimensions and certain choices of kernel, they do not scale
to high-dimensional input spaces, or compose well in a hierarchical model. For example,
the R-INLA software (Lindgren and Rue, 2015) works very well for a very restricted set of
problems, but is not easy to compose with other tools or embed inside another model.

Conversely, pseudo-point approximations alone do not scale to truly large spatio-temporal
settings. The methodology developed in Chapter 3 allows them to scale to problems involving
a large number of time points, and high-dimensional “space”, but it simply doesn’t extend
easily to problems involving a large low-dimensional spatial domain, in which many pseudo-
points would be required to properly cover the spatial domain. For example, the models
to which this approximation applies could not easily be scaled to produce a global model
for temperature with high spatial resolution – some additional approximation is required.
Furthermore, there is often information available at multiple scales, meaning that entirely
different approximations may be best for different components of the model.

A large amount of work goes into scaling up existing GP models. This line of work is
based on the premise that the existing models are adequate, and it is our ability to perform
approximate inference in them that is lacking. While this may be the case, it might also
be that we need to consider more restricted model classes, such as was done in Chapter 4.
Doing this could enable a trade off to be made between flexibility and scalability, that could
be well-suited to a wide array of problems. It might even be the case that a class of GP-based
models exists which is both better suited to a wide range of problems, and more scalable,
than e.g., simple stationary GPs.

Supposing that it turns out to be the case that some combination of existing types of approxi-
mations and restrictions on the class of models considered are able to solve these scalability
problems, it will then be necessary produce software which enables domain experts to easily
combine these approximations and models in just the right way for their particular problem,
if they are to be widely adopted. It will be necessary to abstract away enough detail, and
provide a good enough mixture of practical guidelines and automation, to make it possible
for domain experts to know how to combine approximations in the correct way, with minimal

125

involvement from GP researchers. What this software will look like is not possible to say
currently, as the abstractions that will need to be developed will depend strongly upon what
solutions turn out to be important.

References

Adam, V. (2017). Structured variational inference for coupled Gaussian processes. Workshop
on Advances in Approximate Bayesian Inference.

Adam, V., Chang, P., Khan, M. E. E., and Solin, A. (2021). Dual parameterization of sparse
variational gaussian processes. Advances in Neural Information Processing Systems, 34.

Adam, V., Eleftheriadis, S., Artemev, A., Durrande, N., and Hensman, J. (2020). Doubly
sparse variational Gaussian processes. In International Conference on Artificial Intelli-
gence and Statistics, pages 2874–2884. PMLR.

Adams, R. P., Murray, I., and MacKay, D. J. (2008). The gaussian process density sampler.
In NIPS, pages 9–16.

Alvarez, M. A. and Lawrence, N. D. (2008). Sparse convolved gaussian processes for
multi-output regression. In NIPS, volume 21, pages 57–64.

Alvarez, M. A., Rosasco, L., and Lawrence, N. D. (2011). Kernels for vector-valued functions:
A review. arXiv preprint arXiv:1106.6251.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation,
10(2):251–276.

Archambeau, C., Cornford, D., Opper, M., and Shawe-Taylor, J. (2007). Gaussian process
approximations of stochastic differential equations. In Gaussian Processes in Practice,
pages 1–16. PMLR.

Artemev, A., Burt, D. R., and van der Wilk, M. (2021). Tighter bounds on the log marginal
likelihood of gaussian process regression using conjugate gradients. arXiv preprint
arXiv:2102.08314.

Ashman, M., So, J., Tebbutt, W., Fortuin, V., Pearce, M., and Turner, R. E. (2020). Sparse
Gaussian process variational autoencoders. arXiv preprint arXiv:2010.10177.

Atkinson, C. P., Rayner, N. A., Kennedy, J. J., and Good, S. A. (2014). An integrated
database of ocean temperature and salinity observations. Journal of Geophysical Research:
Oceans, 119(10):7139–7163.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2017). Automatic
differentiation in machine learning: a survey. Journal of machine learning research,
18(153):1–153.

128 References

Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. arXiv preprint
arXiv:1701.02434.

Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. (2012). Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145.

Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kush-
nir, Y., Kimoto, M., Meehl, G. A., Msadek, R., et al. (2016). The decadal climate prediction
project (dcpp) contribution to cmip6. Geoscientific Model Development, 9(10):3751–3777.

Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M., and Durrande, N.
(2021). Matérn gaussian processes on graphs. In International Conference on Artificial
Intelligence and Statistics, pages 2593–2601. PMLR.

Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth (he/him), M. (2020). Matérn
gaussian processes on riemannian manifolds. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33, pages 12426–12437. Curran Associates, Inc.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., and
Wanderman-Milne, S. (2018). JAX: composable transformations of Python+NumPy
programs.

Brönnimann, S., Allan, R., Atkinson, C., Buizza, R., Bulygina, O., Dahlgren, P., Dee, D.,
Dunn, R., Gomes, P., John, V. O., et al. (2018). Observations for reanalyses. Bulletin of
the American Meteorological Society, 99(9):1851–1866.

Bruinsma, W., Perim, E., Tebbutt, W., Hosking, S., Solin, A., and Turner, R. (2020). Scal-
able exact inference in multi-output gaussian processes. In International Conference on
Machine Learning, pages 1190–1201. PMLR.

Bruinsma, W. P., Tegnér, M., and Turner, R. E. (2022). Modelling non-smooth signals
with complex spectral structure. In Proceedings of the 25th International Conference on
Artificial Intelligence and Statistics, Proceedings of Machine Learning Research. PMLR.

Bui, T. D. and Turner, R. E. (2014). Tree-structured Gaussian process approximations.
In Advances in Neural Information Processing Systems 27, pages 2213–2221. Curran
Associates, Inc.

Bui, T. D., Yan, J., and Turner, R. E. (2017). A unifying framework for Gaussian process
pseudo-point approximations using power expectation propagation. Journal of Machine
Learning Research, 18(1):3649–3720.

Bunker, J. and Turner, R. E. (2019). Extending and applying the gaussian process autoregres-
sive regression model.

Burt, D., Rasmussen, C. E., and van der Wilk, M. (2019). Rates of convergence for sparse
variational Gaussian process regression. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 862–871. PMLR.

References 129

Burt, D. R., Artemev, A., and van der Wilk, M. (2021). Barely biased learning for gaussian
process regression. arXiv preprint arXiv:2109.09417.

Burt, D. R., Rasmussen, C. E., and van der Wilk, M. (2020a). Convergence of sparse
variational inference in gaussian processes regression. Journal of Machine Learning
Research, 21:1–63.

Burt, D. R., Rasmussen, C. E., and van der Wilk, M. (2020b). Variational orthogonal features.
arXiv preprint arXiv:2006.13170.

Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P. (2016). Manifold Gaus-
sian processes for regression. In Neural Networks (IJCNN), 2016 International Joint
Conference on, pages 3338–3345. IEEE.

Camden, O. D. (2015). National Statistics Postcode Lookup UK
Coordinates. https://opendata.camden.gov.uk/Maps/
National-Statistics-Postcode-Lookup-UK-Coordinates/
77ra-mbbn. [Online; accessed January-2021].

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of statistical software, 76(1).

Chang, P. E., Wilkinson, W. J., Khan, M. E., and Solin, A. (2020). Fast variational learning
in state-space Gaussian process models. In 2020 IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE.

Chelton, D. B. and Risien, C. M. (2016). Zonal and meridional discontinuities and other
issues with the hadisst1. 1 dataset.

Chen, J. and Revels, J. (2016). Robust benchmarking in noisy environments. arXiv e-prints.

Csató, L. and Opper, M. (2002). Sparse On-Line Gaussian Processes. Neural computation,
14(3):641–668.

Cusumano-Towner, M. F., Saad, F. A., Lew, A. K., and Mansinghka, V. K. (2019). Gen:
a general-purpose probabilistic programming system with programmable inference. In
Proceedings of the 40th acm sigplan conference on programming language design and
implementation, pages 221–236.

Dahl, A. and Bonilla, E. V. (2019). Grouped gaussian processes for solar power prediction.
Machine Learning, 108(8):1287–1306.

Damianou, A. and Lawrence, N. D. (2013). Deep gaussian processes. In Artificial intelligence
and statistics, pages 207–215. PMLR.

Damianou, A. C., Titsias, M. K., and Lawrence, N. (2016). Variational inference for latent
variables and uncertain inputs in gaussian processes.

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472. Citeseer.

https://opendata.camden.gov.uk/Maps/National-Statistics-Postcode-Lookup-UK-Coordinates/77ra-mbbn
https://opendata.camden.gov.uk/Maps/National-Statistics-Postcode-Lookup-UK-Coordinates/77ra-mbbn
https://opendata.camden.gov.uk/Maps/National-Statistics-Postcode-Lookup-UK-Coordinates/77ra-mbbn

130 References

Delworth, T., Manabe, S., and Stouffer, R. J. (1993). Interdecadal variations of the thermoha-
line circulation in a coupled ocean-atmosphere model. Journal of Climate, 6(11):1993–
2011.

Delworth, T. L. and Mann, M. E. (2000). Observed and simulated multidecadal variability in
the northern hemisphere. Climate Dynamics, 16(9):661–676.

Deser, C., Phillips, A. S., and Hurrell, J. W. (2004). Pacific interdecadal climate variability:
Linkages between the tropics and the north pacific during boreal winter since 1900. Journal
of Climate, 17(16):3109–3124.

Doucet, A. (2010). A note on efficient conditional simulation of Gaussian distributions.
Departments of Computer Science and Statistics, University of British Columbia, 4.

Duffin, C., Cripps, E., Stemler, T., and Girolami, M. (2021). Statistical finite elements for
misspecified models. Proceedings of the National Academy of Sciences, 118(2).

Duncker, L., Bohner, G., Boussard, J., and Sahani, M. (2019). Learning interpretable
continuous-time models of latent stochastic dynamical systems. In International Confer-
ence on Machine Learning, pages 1726–1734. PMLR.

Dutordoir, V., Durrande, N., and Hensman, J. (2020). Sparse gaussian processes with
spherical harmonic features. In International Conference on Machine Learning, pages
2793–2802. PMLR.

Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin, G. (2013). Structure dis-
covery in nonparametric regression through compositional kernel search. In International
Conference on Machine Learning, pages 1166–1174. PMLR.

Duvenaud, D., Nickisch, H., and Rasmussen, C. E. (2011). Additive Gaussian Processes.
Advances in Neural Information Processing Systems, 24:226–234.

Duvenaud, D., Rippel, O., Adams, R., and Ghahramani, Z. (2014). Avoiding pathologies in
very deep networks. In Artificial Intelligence and Statistics, pages 202–210. PMLR.

Fairbrother, J., Nemeth, C., Rischard, M., Brea, J., and Pinder, T. (2021). Gaussianprocesses.
jl: A nonparametric bayes package for the julia language. Journal of Statistical Software
(to appear).

Fiedler, T., Pitman, A. J., Mackenzie, K., Wood, N., Jakob, C., and Perkins-Kirkpatrick, S. E.
(2021). Business risk and the emergence of climate analytics. Nature Climate Change,
pages 1–8.

Foland, C., Palmer, T., and Parker, D. (1986). Sahel rainfall and worldwide sea temperatures.
Nature, 320:602–607.

Folland, C., Owen, J., Ward, M. N., and Colman, A. (1991). Prediction of seasonal rainfall
in the sahel region using empirical and dynamical methods. Journal of forecasting,
10(1-2):21–56.

Folland, C. K. and Parker, D. (1995). Correction of instrumental biases in historical
sea surface temperature data. Quarterly Journal of the Royal Meteorological Society,
121(522):319–367.

References 131

Foster, D., Comeau, D., and Urban, N. M. (2020). A bayesian approach to regional decadal
predictability: Sparse parameter estimation in high-dimensional linear inverse models of
high-latitude sea surface temperature variability. Journal of Climate, 33(14):6065–6081.

Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry,
D. I., Brohan, P., Eastman, R., Gates, L., et al. (2017). Icoads release 3.0: a major
update to the historical marine climate record. International Journal of Climatology,
37(5):2211–2232.

Frigola, R., Chen, Y., and Rasmussen, C. E. (2014). Variational gaussian process state-space
models. In Advances in neural information processing systems, pages 3680–3688.

Gardner, J., Pleiss, G., Wu, R., Weinberger, K., and Wilson, A. (2018a). Product Kernel
Interpolation for Scalable Gaussian Processes. In International Conference on Artificial
Intelligence and Statistics, pages 1407–1416. PMLR.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. (2018b). Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in
Neural Information Processing Systems.

Ge, H., Xu, K., and Ghahramani, Z. (2018). Turing: Composable inference for probabilistic
programming. In International Conference on Artificial Intelligence and Statistics, pages
1682–1690.

Gelfand, A. E., Sahu, S. K., and Carlin, B. P. (1995). Efficient parametrisations for normal
linear mixed models. Biometrika, pages 479–488.

Ghahramani, Z. and Rasmussen, C. E. (2003). Bayesian monte carlo. In Advances in neural
information processing systems, pages 505–512.

Gibbs, M. and MacKay, D. J. (1997). Efficient implementation of gaussian processes.

Gilboa, E., Saatçi, Y., and Cunningham, J. (2013). Scaling multidimensional gaussian pro-
cesses using projected additive approximations. In International Conference on Machine
Learning, pages 454–461. PMLR.

Girolami, M. and Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(2):123–214.

Good, S. A., Martin, M. J., and Rayner, N. A. (2013). En4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with uncertainty estimates.
Journal of Geophysical Research: Oceans, 118(12):6704–6716.

Goodman, N., Mansinghka, V., Roy, D. M., Bonawitz, K., and Tenenbaum, J. B. (2012).
Church: a language for generative models. arXiv preprint arXiv:1206.3255.

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University
Press, 1 edition.

Gorinova, M., Moore, D., and Hoffman, M. (2020). Automatic reparameterisation of
probabilistic programs. In International Conference on Machine Learning, pages 3648–
3657. PMLR.

132 References

GPy (since 2012). GPy: A gaussian process framework in python. http://github.
com/SheffieldML/GPy.

Grigorievskiy, A., Lawrence, N., and Särkkä, S. (2017). Parallelizable sparse inverse formu-
lation Gaussian processes (SpInGP). In International Workshop on Machine Learning for
Signal Processing (MLSP), pages 1–6. IEEE.

Ham, Y.-G., Kim, J.-H., and Luo, J.-J. (2019). Deep learning for multi-year enso forecasts.
Nature, 573(7775):568–572.

Hamelijnck, O., Wilkinson, W., Loppi, N., Solin, A., and Damoulas, T. (2021). Spatio-
temporal variational Gaussian processes. Advances in Neural Information Processing
Systems, 34.

Hartikainen, J., Riihimäki, J., and Särkkä, S. (2011). Sparse spatio-temporal Gaussian
processes with general likelihoods. In International Conference on Artificial Neural
Networks, pages 193–200. Springer.

Hawkins, E., Robson, J., Sutton, R., Smith, D., and Keenlyside, N. (2011). Evaluating
the potential for statistical decadal predictions of sea surface temperatures with a perfect
model approach. Climate dynamics, 37(11):2495–2509.

Hawkins, E. and Sutton, R. (2009a). Decadal predictability of the atlantic ocean in a coupled
gcm: Forecast skill and optimal perturbations using linear inverse modeling. Journal of
Climate, 22(14):3960–3978.

Hawkins, E. and Sutton, R. (2009b). The potential to narrow uncertainty in regional climate
predictions. Bulletin of the American Meteorological Society, 90(8):1095–1108.

Hensman, J., Durrande, N., and Solin, A. (2017). Variational fourier features for Gaussian
processes. The Journal of Machine Learning Research, 18(1):5537–5588.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages
282–290. AUAI Press.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015). Scalable variational Gaussian
process classification. In Artificial Intelligence and Statistics, pages 351–360.

Hernández-Lobato, J. M., Requeima, J., Pyzer-Knapp, E. O., and Aspuru-Guzik, A. (2017).
Parallel and distributed thompson sampling for large-scale accelerated exploration of
chemical space. In International conference on machine learning, pages 1470–1479.
PMLR.

HM Land Registry (2014). Price Paid Data. https://www.gov.uk/government/
statistical-data-sets/price-paid-data-downloads. [Online; ac-
cessed January-2021].

Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593–
1623.

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads

References 133

Hoffman, Y. and Ribak, E. (1991). Constrained realizations of Gaussian fields-a simple
algorithm. The Astrophysical Journal, 380:L5–L8.

Huddart, B., Subramanian, A., Zanna, L., and Palmer, T. (2017). Seasonal and decadal
forecasts of atlantic sea surface temperatures using a linear inverse model. Climate
Dynamics, 49(5):1833–1845.

Ialongo, A. D., Van Der Wilk, M., Hensman, J., and Rasmussen, C. E. (2019). Overcom-
ing mean-field approximations in recurrent gaussian process models. In International
Conference on Machine Learning, pages 2931–2940. PMLR.

Ialongo, A. D., van der Wilk, M., and Rasmussen, C. E. (2018). Closed-form inference and
prediction in gaussian process state-space models. arXiv preprint arXiv:1812.03580.

Ingleby, B. and Huddleston, M. (2007). Quality control of ocean temperature and salinity
profiles—historical and real-time data. Journal of Marine Systems, 65(1-4):158–175.

Innes, M. (2018). Don’t unroll adjoint: Differentiating ssa-form programs. CoRR,
abs/1810.07951.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal
of basic Engineering, 82(1):35–45.

Kaplan, A., Kushnir, Y., Cane, M. A., and Blumenthal, M. B. (1997). Reduced space optimal
analysis for historical data sets: 136 years of atlantic sea surface temperatures. Journal of
Geophysical Research: Oceans, 102(C13):27835–27860.

Karpinski, S. (2019). The unreasonable effectiveness of multiple dispatch. https://www.
youtube.com/watch?v=kc9HwsxE1OY. Accessed: 2022-01-22.

Kennedy, J., Rayner, N., Smith, R., Parker, D., and Saunby, M. (2011). Reassessing biases
and other uncertainties in sea surface temperature observations measured in situ since
1850: 2. biases and homogenization. Journal of Geophysical Research: Atmospheres,
116(D14).

Kennedy, J. J., Rayner, N., Atkinson, C., and Killick, R. (2019). An ensemble data set of sea
surface temperature change from 1850: The met office hadley centre hadsst. 4.0. 0.0 data
set. Journal of Geophysical Research: Atmospheres, 124(14):7719–7763.

Khan, M. and Lin, W. (2017). Conjugate-computation variational inference: Converting
variational inference in non-conjugate models to inferences in conjugate models. In
Artificial Intelligence and Statistics, pages 878–887.

Khan, M. E. and Nielsen, D. (2018). Fast yet simple natural-gradient descent for variational
inference in complex models. In 2018 International Symposium on Information Theory
and Its Applications (ISITA), pages 31–35. IEEE.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y.
and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/watch?v=kc9HwsxE1OY

134 References

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kirtman, B., Shukla, J., Balmaseda, M., Graham, N., Penland, C., Xue, Y., and Zebiak,
S. (2002). Current status of enso forecast skill. A report to the Climate Variability and
Predictability (CLIVAR) Numerical Experimentation Group (NEG), CLIVAR Working
Group on Seasonal to Interannual Prediction.

Kok, M. and Solin, A. (2018). Scalable magnetic field slam in 3d using gaussian process
maps. In 2018 21st international conference on information fusion (FUSION), pages
1353–1360. IEEE.

Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. (2015). Automatic variational
inference in stan. In Advances in neural information processing systems, pages 568–576.

Kushnir, Y. (1994). Interdecadal variations in north atlantic sea surface temperature and
associated atmospheric conditions. Journal of Climate, 7(1):141–157.

Lalchand, V. and Rasmussen, C. E. (2020). Approximate inference for fully bayesian gaussian
process regression. In Symposium on Advances in Approximate Bayesian Inference, pages
1–12. PMLR.

Lawrence, N. and Hyvärinen, A. (2005). Probabilistic non-linear principal component
analysis with gaussian process latent variable models. Journal of machine learning
research, 6(11).

Lawrence, N. D. (2003). Gaussian process latent variable models for visualisation of high
dimensional data. In Nips, volume 2, page 5. Citeseer.

Lazaro-Gredilla, M. and Figueiras-Vidal, A. (2009). Inter-domain Gaussian processes for
sparse inference using inducing features. In Advances in Neural Information Processing
Systems, pages 1087–1095.

Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with r-inla. Journal of statistical
software, 63:1–25.

Lindgren, F., Rue, H., and Lindström, J. (2011). An Explicit Link Between Gaussian
Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation
Approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(4):423–498.

Loper, J., Blei, D., Cunningham, J. P., and Paninski, L. (2020). General linear-time inference
for Gaussian processes on one dimension. arXiv preprint arXiv:2003.05554.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The bugs project: Evolution,
critique and future directions. Statistics in medicine, 28(25):3049–3067.

MacKay, D. J. (1998). Introduction to Gaussian processes. NATO ASI Series F Computer
and Systems Sciences, 168:133–166.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge
university press.

References 135

Mahsereci, M. and Hennig, P. (2017). Probabilistic line searches for stochastic optimization.
The Journal of Machine Learning Research, 18(1):4262–4320.

Mantua, N. J. and Hare, S. R. (2002). The pacific decadal oscillation. Journal of oceanogra-
phy, 58(1):35–44.

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C. (1997). A pacific
interdecadal climate oscillation with impacts on salmon production. Bulletin of the
american Meteorological Society, 78(6):1069–1080.

Matthews, A. G. d. G., Hensman, J., Turner, R. E., and Ghahramani, Z. (2016). On sparse
variational methods and the Kullback-Leibler divergence between stochastic processes. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51 of Proceedings of Machine Learning Research, pages 231–239. PMLR.

Matthews, D. G., Alexander, G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A.,
León-Villagrá, P., Ghahramani, Z., and Hensman, J. (2017). Gpflow: A Gaussian process
library using TensorFlow. The Journal of Machine Learning Research, 18(1):1299–1304.

Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S.,
Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., et al. (2014). Decadal climate prediction:
an update from the trenches. Bulletin of the American Meteorological Society, 95(2):243–
267.

Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K.,
Giorgetta, M. A., Greene, A. M., Hawkins, E., et al. (2009). Decadal prediction: Can it be
skillful? Bulletin of the American Meteorological Society, 90(10):1467–1486.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G. (2012). An overview
of the global historical climatology network-daily database. Journal of Atmospheric and
Oceanic Technology, 29(7):897–910.

Minka, T. (2004). Power EP. Technical report, Technical report, Microsoft Research,
Cambridge.

Mogensen, P. K. and Riseth, A. N. (2018). Optim: A mathematical optimization package for
Julia. Journal of Open Source Software, 3(24):615.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

NASA-JPL (2020). NASADEM Merged DEM Global 1 arc second V001 [Data set]. NASA
EOSDIS Land Processes DAAC.

Neal, R. M. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2(11):2.

Newman, M. (2007). Interannual to decadal predictability of tropical and north pacific sea
surface temperatures. Journal of climate, 20(11):2333–2356.

Newman, M. (2013). An empirical benchmark for decadal forecasts of global surface
temperature anomalies. Journal of Climate, 26(14):5260–5269.

136 References

Nicholson, G., Blangiardo, M., Briers, M., Diggle, P. J., Fjelde, T. E., Ge, H., Goudie, R. J.,
Jersakova, R., King, R. E., Lehmann, B. C., et al. (2021). Interoperability of statistical
models in pandemic preparedness: principles and reality. arXiv preprint arXiv:2109.13730.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

Ober, S. W. and Aitchison, L. (2021). Global inducing point variational posteriors for
bayesian neural networks and deep gaussian processes. In International Conference on
Machine Learning, pages 8248–8259. PMLR.

O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the Royal
Statistical Society: Series B (Methodological), 40(1):1–24.

O’Hagan, A. (1987). Monte carlo is fundamentally unsound. The Statistician, pages 247–249.

O’Hagan, A. (1991). Bayes–hermite quadrature. Journal of statistical planning and inference,
29(3):245–260.

Opper, M. and Archambeau, C. (2009). The variational Gaussian approximation revisited.
Neural Computation, 21(3):786–792.

Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian processes for global
optimization. In 3rd international conference on learning and intelligent optimization
(LION3), pages 1–15.

O’Hagan, A. (1998). A Markov property for covariance structures. Statistics Research
Report, 98:13.

Panos, A., Dellaportas, P., and Titsias, M. K. (2018). Fully scalable Gaussian processes using
subspace inducing inputs. arXiv preprint arXiv:1807.02537.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

Penland, C. (1989). Random forcing and forecasting using principal oscillation pattern
analysis. Monthly Weather Review, 117(10):2165–2185.

Penland, C. and Magorian, T. (1993). Prediction of niño 3 sea surface temperatures using
linear inverse modeling. Journal of Climate, 6(6):1067–1076.

Penland, C. and Sardeshmukh, P. D. (1995). The optimal growth of tropical sea surface
temperature anomalies. Journal of climate, 8(8):1999–2024.

Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N. D., and Karniadakis, G. E. (2017).
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
473(2198):20160751.

Plummer, M. et al. (2003). Jags: A program for analysis of Bayesian graphical models using
gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical
computing, volume 124. Vienna, Austria.

References 137

Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V. (1999). Inter-decadal modulation
of the impact of enso on australia. Climate Dynamics, 15(5):319–324.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6(Dec):1939–1959.

Rasmussen, C. E. and Nickisch, H. (2010). Gaussian processes for machine learning (GPML)
toolbox. Journal of machine learning research, 11(Nov):3011–3015.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning.
The MIT Press.

Rauch, H. E., Striebel, C., and Tung, F. (1965). Maximum likelihood estimates of linear
dynamic systems. AIAA journal, 3(8):1445–1450.

Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V., Rowell, D., Kent,
E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and
night marine air temperature since the late nineteenth century. Journal of Geophysical
Research: Atmospheres, 108(D14).

Requeima, J., Tebbutt, W., Bruinsma, W., and Turner, R. E. (2019). The gaussian process
autoregressive regression model (gpar). In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1860–1869. PMLR.

Revels, J., Lubin, M., and Papamarkou, T. (2016). Forward-mode automatic differentiation
in julia. arXiv:1607.07892 [cs.MS].

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.

Rodrigues, E., Zadrozny, B., Watson, C., and Gold, D. (2021). Decadal forecasts with
resdmd: a residual dmd neural network. arXiv preprint arXiv:2106.11111.

Saatçi, Y. (2012). Scalable Inference for Structured Gaussian Process Models. PhD thesis,
University of Cambridge.

Salimbeni, H., Dutordoir, V., Hensman, J., and Deisenroth, M. (2019). Deep gaussian
processes with importance-weighted variational inference. In International Conference on
Machine Learning, pages 5589–5598. PMLR.

Salimbeni, H., Eleftheriadis, S., and Hensman, J. (2018). Natural gradients in prac-
tice: Non-conjugate variational inference in Gaussian process models. arXiv preprint
arXiv:1803.09151.

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in python
using pymc3. PeerJ Computer Science, 2:e55.

Särkkä, S. and García-Fernández, Á. F. (2020). Temporal parallelization of Bayesian
smoothers. IEEE Transactions on Automatic Control.

Särkkä, S. and Solin, A. (2019). Applied Stochastic Differential Equations. Cambridge
University Press.

138 References

Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process regression
through Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61.

Scherrer, C. and Zhao, T. (2020). Soss: Declarative probabilistic programming via runtime
code generation. doi:10.5281/zenodo.5520061.

Schober, M., Särkkä, S., and Hennig, P. (2019). A probabilistic model for the numerical
solution of initial value problems. Statistics and Computing, 29(1):99–122.

Seeger, M. (1999). Bayesian methods for support vector machines and gaussian processes.
Technical report, Univeristy of Edinburgh.

Seeger, M., Williams, C., and Lawrence, N. (2003). Fast forward selection to speed up
sparse Gaussian process regression. In Proceedings of the Ninth International Workshop
on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics.

Shah, A., Wilson, A., and Ghahramani, Z. (2014). Student-t processes as alternatives to
gaussian processes. In Artificial intelligence and statistics, pages 877–885. PMLR.

Simpson, F., Lalchand, V., and Rasmussen, C. E. (2020). Marginalised gaussian processes
with nested sampling. arXiv preprint arXiv:2010.16344.

Snelson, E. and Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems, pages 1257–1264. MIT Press.

Snelson, E. and Ghahramani, Z. (2012). Variable noise and dimensionality reduction for
sparse Gaussian processes. arXiv preprint arXiv:1206.6873.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25.

Solin, A. (2016). Stochastic differential equation methods for spatio-temporal Gaussian
process regression. PhD thesis, Aalto University.

Solin, A., Hensman, J., and Turner, R. E. (2018). Infinite-horizon Gaussian processes. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pages 3490–3499.

Steinruecken, C., Smith, E., Janz, D., Lloyd, J., and Ghahramani, Z. (2019). The automatic
statistician. In Automated Machine Learning, pages 161–173. Springer, Cham.

Tanaka, Y., Tanaka, T., Iwata, T., Kurashima, T., Okawa, M., Akagi, Y., and Toda, H. (2019).
Spatially aggregated gaussian processes with multivariate areal outputs. arXiv preprint
arXiv:1907.08350.

Thomas, A., Spiegelhalter, D. J., and Gilks, W. (1992). Bugs: A program to perform bayesian
inference using gibbs sampling. Bayesian statistics, 4(9):837–842.

Titsias, M. and Lawrence, N. D. (2010). Bayesian gaussian process latent variable model.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 844–851. JMLR Workshop and Conference Proceedings.

References 139

Titsias, M. and Lázaro-Gredilla, M. (2014). Doubly stochastic variational bayes for non-
conjugate inference. In International Conference on Machine Learning, pages 1971–1979.

Titsias, M. K. (2009). Variational learning of inducing variables in sparse Gaussian processes.
In Proceedings of the Twelth International Conference on Artificial Intelligence and
Statistics, volume 5 of Proceedings of Machine Learning Research, pages 567–574.
PMLR.

Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. In Advances in Neural
Information Processing Systems, pages 12749–12759. Curran Associates, Inc.

Tobar, F., Bui, T. D., and Turner, R. E. (2015). Learning stationary time series using gaussian
processes with nonparametric kernels. Advances in neural information processing systems,
28.

Tolpin, D., van de Meent, J.-W., and Wood, F. (2015). Probabilistic programming in
anglican. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 308–311. Springer.

Turner, R. E. (2010). Statistical Models for Natural Sounds. PhD thesis, UCL (University
College London).

Turner, R. E. and Sahani, M. (2011). Demodulation as probabilistic inference. IEEE
Transactions on Audio, Speech, and Language Processing, 19(8):2398–2411.

van der Wilk, M., Rasmussen, C. E., and Hensman, J. (2017). Convolutional Gaussian
processes. In Advances in Neural Information Processing Systems, pages 2849–2858.

Whittle, P. (1963). Stochastic-processes in several dimensions. Bulletin of the International
Statistical Institute, 40(2):974–994.

Wilkinson, W., Andersen, M., Reiss, J. D., Stowell, D., and Solin, A. (2019a). End-to-end
probabilistic inference for nonstationary audio analysis. In International Conference on
Machine Learning, pages 6776–6785. PMLR.

Wilkinson, W., Solin, A., and Adam, V. (2021). Sparse algorithms for Markovian Gaussian
processes. In International Conference on Artificial Intelligence and Statistics, pages
1747–1755. PMLR.

Wilkinson, W. J., Andersen, M. R., Reiss, J. D., Stowell, D., and Solin, A. (2019b). Uni-
fying probabilistic models for time-frequency analysis. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3352–3356. IEEE.

Wilkinson, W. J., Chang, P. E., Andersen, M. R., and Solin, A. (2020). State space expectation
propagation: Efficient inference schemes for temporal Gaussian processes. In Proceedings
of the 32nd International Conference on Machine Learning (ICML), volume 119 of
Proceedings of Machine Learning Research. PMLR.

Williams, C. K. and Rasmussen, C. E. (1996). Gaussian processes for regression.

140 References

Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured Gaussian
processes (KISS-GP). In International Conference on Machine Learning, pages 1775–
1784.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). Stochastic variational deep
kernel learning. arXiv preprint arXiv:1611.00336.

Wilson, A. G., Knowles, D. A., and Ghahramani, Z. (2012). Gaussian process regression
networks. In Proceedings of the 29th International Conference on International Conference
on Machine Learning, pages 1139–1146.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. (2020). Efficiently
sampling functions from gaussian process posteriors. In International Conference on
Machine Learning, pages 10292–10302. PMLR.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2021).
Pathwise conditioning of gaussian processes. Journal of Machine Learning Research,
22(105):1–47.

Wu, A., Aoi, M. C., and Pillow, J. W. (2017a). Exploiting gradients and hessians in bayesian
optimization and bayesian quadrature. arXiv preprint arXiv:1704.00060.

Wu, J., Poloczek, M., Wilson, A. G., and Frazier, P. (2017b). Bayesian optimization with
gradients. In Advances in Neural Information Processing Systems, pages 5267–5278.

Xi, X., Briol, F.-X., and Girolami, M. (2018). Bayesian quadrature for multiple related
integrals. In International Conference on Machine Learning, pages 5373–5382. PMLR.

Zanna, L. (2012). Forecast skill and predictability of observed atlantic sea surface tempera-
tures. Journal of Climate, 25(14):5047–5056.

Appendix A

A.1 Multiple Dispatch

Multiple Dispatch enables functions to provide specialised implementations depending upon
the type of their arguments, and is central to the Julia programming language. Consider f
in Fig. A.1. In Julia-parlance, f is a function with two methods. In general, if f is called
on some argument x, the first method will be called, since it applies to any data type. If,
however, x is a real number, the second method will be called. The act of dispatch is that of
choosing which method of f to use for a particular set of arguments. The most specialised
method which is applicable will be chosen.

This same concept extends to functions with multiple arguments. g is another function, this
time with three methods. The first applies to any argument types, the second when x is a real
number, and the last when both x and y are real numbers.

Unary case.
f(x::Any) = ...
f(x::Real) = ...

Binary case.
g(x::Any, y::Any) = ...
g(x::Real, y::Any) = ...
g(x::Real, y::Real) = ...

Fig. A.1 Two examples of functions with multiple methods.

It is this mechanism that we employ to provided specialise implementations of the functions
discussed in the interfaces in Chapter 2. For example, Fig. A.2 shows four methods of the

142

function cov, each of which is specialised to a different type of GP. Each method of cov
computes the same thing, they just go about it in different ways.

cov(f::GP, x) = ...
cov(f::PosteriorGP, x) = ...
cov(f::BayesianLinearRegressor, x) = ...
cov(f::MyNewGPType, x) = ...

Fig. A.2 Implementations of cov which specialise on the particular kind of GP they en-
counter.

Multiple Dispatch is a strict generalisation of Single Dispatch, which is used widely in
Object Oriented programming languages. In particular methods of classes in Object Oriented
languages specialise on their first argument, often called self, and do not specialise on the
other methods. They do not, however, allow for specialisation based on the type of their other
arguments.

Furthermore, note that multiple dispatch is distinct from function overloading – Karpinski
(2019) provides a careful discussion of the distinction between the two.

Appendix B

B.1 Conditional Independence Properties of Optimal Ap-
proximate Observation Models

Conditional independence structure in the observation model is reflected in the optimal
approximate posterior, regardless the precise form of the observation model (Gaussian,
Bernoulli, etc). Moreover, for Gaussian observation models, it is possible to find the model
in which performing exact inference yields the optimal approximate posterior. These two
properties are derived in the following two subsections.

B.1.1 Conditional Independence Structure

This is only a slight extension of the result of Seeger (1999) and Opper and Archambeau
(2009), which generalises from reconstruction terms which depend on only a one dimensional
marginal of the Gaussian in question, to non-overlapping multi-dimensional marginals of
arbitrary size. Let

p(ū) := N (u;m,C) , q(ū) := N (ū;mq,Cq) , (B.1)

for m,mq ∈ RN and positive-definite matrices C,Cq ∈ SN
+ . Partition ū into a collection of

T sets, ū1, ..., ūT , such that

ū =

ū1

...
ūT

 . (B.2)

Let mt and mq
t be the blocks of m and mq corresponding to ūt. Similarly let Ct and Cq

t

the on-diagonal blocks of C and Cq corresponding to ūt. Then the prior and approximate

144

posterior marginals over ūt are

p(ūt) = N (ūt;mt,Ct) , q(ūt) = N (ūt;m
q
t ,C

q
t) , (B.3)

due to the marginalisation property of Gaussians.

Assume that the reconstruction term can be written as a sum over terms specific to each ūt,

r(mq,Cq) =
T∑
t=1

rt(m
q
t ,C

q
t) , (B.4)

for functions r1, ..., rT . This is a useful assumption because it is satisfied for the model class
considered in this work. Under this assumption, the optimal Gaussian approximate posterior
density is proportional to

p(ū)
T∏
t=1

N
(
yq
t ; ūt, [Gt]

−1
)

(B.5)

for appropriately-sized surrogate observations yq
1, ...,y

q
T and positive-definite precision ma-

trices G1, ...,GT , which is to say that the optimal approximate posterior is equivalent to the
exact posterior under a “surrogate” Gaussian observation model whose density factorises
across ū1, ..., ūT .

A straightforward way to arrive at this result is via a standard result involving exponential
families. Consider an exponential family prior

p(ū) = h(ū) exp(⟨η, φ(ū)⟩ − A(η)) , (B.6)

where h is the base measure, φ the sufficient-statistic function, A the log partition function,
and η the natural parameters. and approximate posterior in the same family,

q(ū) = h(ū) exp(⟨ηq, φ(ū)⟩ − A(ηq)) , (B.7)

which differs from p only in its natural parameters ηq. Let

p(ū |y) ∝ p(ū) p(y | ū) (B.8)

be the posterior over ū given observations y under an arbitrary observation model p(y | ū).
It is well-known (for example see Khan and Nielsen (2018)) that the ηq minimising
KL[q(ū) ||p(ū |y)] satisfies

ηq = η + (∇µr)(µ(η
q)) . (B.9)

B.1 Conditional Independence Properties of Optimal Approximate Observation Models145

where µ denotes the expectation parameters µ := Eq[φ(ū)] and, in an abuse of notation, µ(η)
denotes the function computing the mean parameter for any particular natural parameter.
Given the canonical parameters m and C of a Gaussian, and letting Λ := [C]−1, its natural
parameters and mean parameters are

η = (η1, η2) = (Λm,−1

2
Λ), µ = (µ1, µ2) = (m,mm⊤ +C). (B.10)

Let Λq := [Cq]−1 be the precision of q, Λ := C−1 the precision of p, and recall that the
optimal Gaussian approximate posterior satisfies

Λq = Λ− 2 (∇Cqr)(mq,Cq) . (B.11)

Due to the assumed structure in r, ∇Cqr is block-diagonal:

(∇Cqr)(mq,Cq) =

(∇C

q
1
r1)(m

q
1,C

q
1) 0

. . .

0 (∇C
q
T
rT)(m

q
T ,C

q
T)

 . (B.12)

Observe that each on-diagonal block involves only the corresponding term in r, i.e. the tth

block is only a function of rt.

Equating the exact posterior precision under the approximate model in Eq. (B.5) with the
optimal approximate posterior precision yields

Λ+

Λ
q
1 0

. . .

0 Λq
T

 = Λ+

−2 (∇C

q
1
r1)(m

q
1,C

q
1) 0

. . .

0 −2 (∇C
q
T
rT)(m

q
T ,C

q
T)

 (B.13)

From the above we deduce that letting Λq
t := −2 (∇C

q
t
rt)(m

q
t ,C

q
t) ensures that the posterior

precision under the surrogate model and the precision of the approximate posterior coincide
for the optimal q.

Similarly, the optimal approximate posterior mean satisfies

Λqmq = Λm+ [∇µr]1, (B.14)

where [∇µr]1 denotes the component of the gradient of r w.r.t. µ corresponding to µ1.
Equating the optimal posterior mean under the approximate model in Eq. (B.5) with that of

146

the optimal approximate posterior yieldsG1 0
. . .

0 GT

y

q
1
...
yq
T

 =

[∇µr1]1
...

[∇µrT]1

 . (B.15)

This implies that yq
t := G−1

t [∇µr]1t.

B.1.2 Approximate Inference via Exact Inference

Recall the standard saturated bound introduced by Titsias (2009), that is obtained at the
optimal approximate posterior:

L = logN (y;mf ,Cf ūΛūCūf + S)− 1

2
tr
(
S−1[Cf −Cf ūΛūCūf]

)
. (B.16)

The first term is simply to log marginal likelihood of the LGSSM defined in Eq. (3.44) if f is
separable, or Eq. (3.45) if it is sum-separable.

Recall from Eq. (3.40) that

Cf ūΛū =

B1 0
. . .

0 BT

 ,

Bt :=CftutΛutHMτD,

so the trace term in Eq. (B.16) can be written as

tr
(
S−1[Cf −Cf ,ūΛūCū,f]

)
= tr

(
S−1[Cf −Cf ,ūΛūCūΛūCū,f]

)
=

T∑
t=1

tr
(
S−1
t [Cft −BtCūtBt]

)
(B.17)

=
T∑
t=1

tr
(
S−1
t [Cft −CftutΛutCutΛutCutft]

)
=

T∑
t=1

tr
(
S−1
t [Cft −CftutΛutCutft]

)
(B.18)

B.1 Conditional Independence Properties of Optimal Approximate Observation Models147

These quantities can be computed either by running the approximate model forwards through
time and computing the marginal statistics using Eq. (B.17), or via the κr and κτ directly
using Eq. (B.18).

Observe that, as with any ft from the training data, the marginal distribution over some f∗t

under the approximate posterior only involves ūt as f∗t ⊥⊥ ū\t | ūt:

q(f∗t) = N
(
f∗t; m̂f∗t ,C

q
f∗t

)
where

m̂f∗t := mf∗t +Cf∗tutΛutHut(m̂ūt −mūt),

Cq
f∗t

:= Cf∗t −Cf∗tutΛutHut

[
Cūt − [Λ̂∗

ūt
]−1

]
H⊤

ut
ΛutCutf∗t .

Performing smoothing in the approximate model provides m̂ūt and [Λ̂∗
ūt
]−1, from which the

optimal approximate posterior marginals are straightforwardly obtained via the above.

B.1.3 Block-Diagonal Structure

Furthermore, this conditional independence property implies that

CftūC
−1
ū =

[
0 . . . Cf̄tūt

C−1
ūt

. . . 0
]
. (B.19)

This is easily proven by considering that, were it not the case, then

E[ft | u] ̸= E[ft | ut] , (B.20)

for any non-zero u, which is a contradiction. It follows from repeated application of
Eq. (B.19) that the larger matrix Cf ūC

−1
ū is block-diagonal, and is given by

Cf ūC
−1
ū :=

Cf1ūC
−1
ū

...
CfT ūC

−1
ū

 =

Cf1ū1C
−1
ū1

0
. . .

0 CfT ūT
C−1

ūT
.

 (B.21)

Similar manipulations reveal that the same property holds in the sum-separable case.

148

B.2 Additional Experiment Details

B.2.1 Benchmarking Experiment

The kernel of the GP used in all experiments is

κ((r, τ), (r′, τ ′)) = κr(r, r′)κτ (τ, τ ′) (B.22)

where κr is an Exponentiated Quadratic kernel with length scale 0.9 and amplitude 0.92, and
κτ is a Matern-3/2 kernel with length scale 1.2. The particular values of the length scales
/ amplitudes are of little importance to the proof-of-concept experiments presented in this
work – they were chosen pseudo-randomly.

101 102 103 104 105

−18

−16

−14

−12

T

E
L

B
O

/T

Mτ = 20

Mτ = 10

Mτ = 5
exact

101 102 103 104 105
−90

−80

−70

−60

T

E
L

B
O

/T

Mτ = 20

Mτ = 10

Mτ = 5

exact (sde)
exact

Fig. B.1 The ELBO obtained vs the exact LML. The bound appears reasonably tight when
Mτ = 10 are used per time point, and very tight for Mτ = 20. Mτ = 5 is clearly insufficient.

These experiments were conducted using a single thread on a 2019 MacBook Pro with
2.6 GHz CPU. Timings produced using benchmarking functionality provided by Chen and
Revels (2016).

Sum-Separable Experiments

Similar experiments to those in section Sec. 3.7 were performed with the sum-separable
kernel given by adding two separable kernels of the form in Eq. (3.1), although with similar
length-scales and amplitudes. The results are broadly similar, although the state space
approximations and state space + pseudo-point approximations take a bit longer to run as
there are twice as many latent dimensions for a given number of pseudo-points than in the

B.2 Additional Experiment Details 149

101 102 103 104 105

10−3

10−2

10−1

100

101

T

C
om

pu
te

Ti
m

e
(s

)

Mτ = 20

Mτ = 10

Mτ = 5
exact

101 102 103 104 105

10−3

10−2

10−1

100

101

T

C
om

pu
te

Ti
m

e
(s

)

Mτ = 20

Mτ = 10

Mτ = 5

exact (sde)
exact

Fig. B.2 Time to compute LML exactly vs ELBO with a sum of two separable kernels. Left:
irregular samples as per Fig. 3.7. Right: regular samples with missing data as per Fig. 3.8.
Observe that, due to the increased latent dimensionality of the sum-separable model, it takes
longer to compute the ELBO (and LML using the vanilla state space approximation) than in
the separable case.

separable model. As before, these experiments should be thought of purely as a proof of
concept.

B.2.2 Climatology Data

The spatial locations of the pseudo-points were chosen via k-means clustering of lat-lon
coordinates of sold apartments, using Clustering.jl, and were not optimised beyond that.1

The separable kernel was

κ((r, τ), (r′, τ ′)) = s κr(Λr,Λr′)κτ (λτ, λτ ′) (B.23)

where κτ is a standardised Matérn-5
2
, κr is a standardised Exponentiated Quadratic, Λ is a

diagonal matrix with positive elements, λ > 0, s > 0. Initialisation: λ = 10−2, Λd,d = 1,
s = 1, d ∈ {1, 2, 3}. Observation noise variance initialised to 0.5.

The L-BFGS implementation provided by Mogensen and Riseth (2018) was utilised to
optimise the ELBO, with memory M = 50 iterations, and gradients computed using the
Zygote.jl algorithmic differentiation tool (Innes, 2018). All kernel parameters constrained to
be positive by optimising the log of their value, and observation noise variance constrained

1https://github.com/JuliaStats/Clustering.jl

https://github.com/JuliaStats/Clustering.jl

150

101 102 103 104 105

−20

−18

−16

−14

−12

T

E
L

B
O

/T

Mτ = 20

Mτ = 10

Mτ = 5
exact

101 102 103 104 105
−80

−75

−70

−65

−60

T
E

L
B

O
/T

Mτ = 20

Mτ = 10

Mτ = 5

exact (sde)
exact

Fig. B.3 Analogue of Fig. B.1 for Fig. B.2. As before, Mτ = 5 is clearly insufficient for
accurate inference, while Mτ = 20 is very close to the LML.

to be in [10−2, 2] via a re-scaled logit transformation – this is justifiable as the data itself was
standardised to have unit variance.

The sum-separable model comprises a sum of two GPs with kernels of this form. Initialisation:
λ = {10−3, 10−1}, Λd,d = {1.0, 5.0}, s = {0.7, 0.3}. The same optimisation procedure was
used.

B.2.3 Apartment Data

The spatial locations of the pseudo-points were chosen via k-means clustering of lat-lon
coordinates of sold apartments, using Clustering.jl, and were not optimised beyond that.
Mτ = 75 pseudo-points used per time point.

The separable kernel was

κ((r, τ), (r′, τ ′)) = s κr(Λr,Λr′)κτ (λτ, λτ ′) (B.24)

where κτ is a standardised Matérn-3
2
, κr is a standardised Exponentiated Quadratic, Λ is a

diagonal matrix with positive elements, λ > 0, s > 0. Initialisation: λ = 10−2, Λd,d = 1,
s = 1, d ∈ {1, 2}. Observation noise variance initialised to 0.5.

The L-BFGS implementation provided by Mogensen and Riseth (2018) was utilised to
optimise the ELBO, with memory M = 50 iterations, and gradients computed using the
Zygote.jl algorithmic differentiation tool (Innes, 2018). All kernel parameters constrained to

B.3 Efficient Inference in Linear Latent Gaussian Models 151

be positive by optimising the log of their value, and observation noise variance constrained
to be in [10−2, 2] via a re-scaled logit transformation – this is justifiable as the data itself was
standardised to have unit variance.

The sum-separable model comprises a sum of two GPs with kernels of this form. Initialisation:
λ = {10−3, 10−1}, Λd,d = {1.0, 5.0}, s = {0.7, 0.3}. The same optimisation procedure was
used.

B.3 Efficient Inference in Linear Latent Gaussian Models

Consider the linear-Gaussian model

x ∼ N (mx,Cx)

y | x ∼ N (Ax+ a,Q)

where mx ∈ RDx and a ∈ RDy are vectors, Cx is a Dx ×Dx positive-definite matrix, Q is a
Dy ×Dy diagonal positive definite matrix, and A is a Dy ×Dx matrix. We need to

1. generate samples from the marginal distribution over p(y),

2. compute the marginals p(yn), n = 1, ..., Dy,

3. compute the LML p(y), and

4. compute the posterior distribution p(x |y).

All of these operations can be performed exactly in polynomial-time since x and y are jointly
Gaussian distributed. However, there are two approaches for computing 1, 3, and 4, one of
which will be faster depending upon Dx and Dy.

In this section we analyse these approaches. We do this to prepare for deriving the additional
algorithms needed to perform the above operations efficiently when A := BC, for tall B
and wide C.

B.3.1 Preliminaries

The marginal distibution over y is

y ∼ N (my,Cy) , my := Amx + a, Cy := ACxA
⊤ +Q.

152

Computing ACx requires O(DyD
2
x) operations, and (ACx)A

⊤ requires O
(
D2

yDx

)
, so

constructing the marginals takes roughly O
(
DyD

2
x +D2

yDx

)
operations.

By computing p(y) we will mean computing my and Cy.

B.3.2 Sampling

First consider sampling from the marginal distribution over p(y). The two approaches to this
are:

1. Ancestral sampling: first sample from p(x) then from p(y |x).

2. Direct marginal sampling: compute the marginal distribution p(y) and sample from it
directly.

Ancestral sampling requires computing the Cholesky factorisation of Cx, thus the overall
algorithm requires O(D3

x +DxDy) scalar operations. Conversely, computing p(y) and
sampling from it requires O

(
DyD

2
x +D2

yDx +D3
y

)
scalar operations. So if Dx is much

smaller than Dy we are better off using ancestral sampling, but if Dx is much larger than Dy

then direct marginal sampling is better.

B.3.3 Computing Marginal Probabilities

To compute all p(yn) we must compute both my and the diagonal of Cy. my requires only
O(DxDy) scalar operations. Once ACx has been computed, obtaining the diagonal of Cy

requires only an additional O(DxDy) scalar operations, so the whole operation requires
roughly O(DyD

2
x) operations.

B.3.4 Computing the Log Marginal Likelihood and Posterior

These two operations can be performed separately, but it typically makes sense to perform
them together as the majority of computational work is shared between them.

B.3 Efficient Inference in Linear Latent Gaussian Models 153

Algorithm 1 LML by and posterior by factorising p(y).
Approx. number of scalar operations on the right of
each line.

1: Naive-Inference: mx, Cx, A, a, Q, y
2: V← ACx O(DyD

2
x)

3: Cy ← VA⊤ +Q O
(
D2

yDx

)
4: U← cholesky(Cy) O

(
D3

y

)
5: B← U−⊤V O

(
D2

yDx

)
6: α← U−⊤(y − (Amx + a)) O

(
D2

y

)
7: lml ← −1

2

[
Dy log 2π + 2 log detU+ α⊤α

]
O(Dy)

8: mx|y ←mx +B⊤α O(DyDx)

9: Cx|y ← Cx +B⊤B O(D2
xDy)

10: return mx|y,Cx|y, lml

Algorithm 2 LML and posterior by utilising the matrix inversion and
determinant lemmas. Approx. number of scalar operations on the right of
each line. Note that since Q is diagonal, its Cholesky factorisation is also
diagonal.

1: Low-Rank-Inference: mx, Cx, A, a, Q, y
2: UQ ← cholesky(Q) O(Dy)

3: Ux ← cholesky(Cx) O(Dx)

4: B← UxA
⊤U−1

Q O(D2
xDy)

5: U← cholesky
(
BB⊤ + I

)
O(D3

x +D2
xDy)

6: G← U−⊤Ux O(D3
x)

7: Cx|y ← G⊤G O(D3
x)

8: δ ← U−⊤
Q (y − (Amx + a)) O(Dy)

9: β ← Bδ O(DyDx)

10: mx|y ←mx +G⊤(U−⊤β) O(D2
x)

11: lml← −1
2

[
δ⊤δ − (U−⊤β)⊤U−⊤β +Dy log 2π + 2 log detU+ 2 log detQ

]
O(D2

x)

12: return mx|y,Cx|y, lml

Note that Algorithm 1 and Algorithm 2 are locally scoped, so the symbols don’t necessarily
correspond to the same quantities. For example, B is different in each algorithm.

154

B.3.5 Bottleneck Linear-Gaussian Observation Models

The above inference methods assume no particular structure in A, however, recall that
Eq. (3.44) gives A at time t to be

A = Cfn,tutΛutHu (B.25)

where Hu is M ×MD and Cfn,tut is N ×M . Most kernels have D > 1, so it’s worth
determining whether we can utilise this structure to accelerate inference.

To this end consider a model given by

z :=Hx+ h, x ∼ N (mx,Cx) (B.26)

y :=Bz+ b+ ε, ε ∼ N (0,Q) (B.27)

where H ∈ RM×DM , h ∈ RM , B ∈ RN×M , b, ε ∈ RN , and Q ∈ RN×N is a positive-definite
diagonal matrix. We call this a bottleneck model, since z carries all of the information in x

needed to perform inference in y, its dimension is less than that of x and y in the problems
that we consider.

Observe that this model forms a two-state degenerate Markov chain. Algorithm 3 utilises
this Markov structure, and is able to recycle Algorithm 2 as a consequence. It comprises
three broad components: computing the marginals over z, computing the posterior z|y, and
finally computing the posterior x|y. This last step is equivalent to performing a single step
of RTS smoothing.

Algorithm 3 LML and posterior. Utilises the matrix inversion and de-
terminant lemmas, and the bottlenecked structure of the model. Approx.
number of scalar operations on the right of each line.

1: Bottleneck-Inference: mx, Cx, B, b, Q, H, h, y
2: mz ← Hmx + h O(DzDx)

3: Cz ← HCxH
⊤ + h O(DzD

2
x +D2

zDx)

4: mz|y,Cz|y, lml ← Low-Rank-Inference(mz,Cz,B,b,Q)

O(D2
zDy +D3

z)

5: U← cholesky
(
Cz|y

)
O(D3

z)

6: G← CxH
⊤U−1U−⊤ O(D2

xDz)

7: mx|y ←mx +G⊤(mz|y −mz) O(DzDx)

8: Cx|y ← Cx +G⊤(Cz|y −Cz)G O(D2
zDx +D2

x)

9: return mx|y,Cx|y, lml

B.3 Efficient Inference in Linear Latent Gaussian Models 155

Observe that this algorithm exchanges O(D3
x) for O(D3

z) operations. Recalling that Dx =

MD and Dz = M , we expect that this algorithm will produce better performance than
Algorithm 2 for some value of D > 1. Since the exact value of D at which this change will
occur is unclear, and the optimal choice of algorithm for the experiments in this work depends
on this, we investigate the effect of D, M , and N on the performance of each algorithm in
the next subsection.

B.3.6 Benchmarking Inference

10−1 100 101
10−2

10−1

100

101

102

N / M

tim
e(
µ
s)

10−1 100 101
10−2

10−1

100

101

102

N / M

tim
e(
µ
s)

10−1 100 101
10−2

10−1

100

101

102

N / M

tim
e(
µ
s)

Fig. B.4 Black-circle=naive, red square=low rank, blue triangle=bottleneck. All experiments
conducted using M = 100 pseudo-points. Left: D = 1, Middle: D = 2, Right: D = 3.

Fig. B.4 shows the performance of the three different algorithms for computing the LML
and posterior distribution as the dimensions of the linear-Gaussian model’s dimensions
change. Black lines with circles use Algorithm 1 (labelled naive), red lines with squares
used Algorithm 2 (labelled low rank), and blue lines with triangles use Algorithm 3 (labelled
bottleneck). The experiments are set up to match situations encountered in the spatio-temporal
models discussed in this paper – they are parametrised in terms of the number of M , N , and
D. M is fixed to 100 across all three graphs, the total number of latent dimensions is MD

156

for D ∈ {1, 2, 3}, corresponding to the Matérn-1/2, Matérn-3/2, and Matérn-5/2 kernels
respectively. The number of observations N range between 0.1M = 10 and 10M = 1000.

As expected the naive algorithm performs better when N < M , but this quickly changes
when N > M . For the kinds of problems encountered in this work we generally have that
N > M , which would suggest that correct choice in our work is typically the low-rank
algorithm. For M = N the naive algorithm tends to be faster, owing to the smaller number
of operations used – it’s just a shorter algorithm than the low-rank algorithm.

Algorithm 3, bottleneck, performs similarly or better than Algorithm 2 for D = 2 and D = 3.
The gap between the two grows as N grows, suggesting that Algorithm 3 will typically be a
better choice for large M . Indeed, even for D = 1 the difference between the two becomes
close for large N .

Given that N , M and D determine which of the three algorithms is optimal, one must choose
appropriately for any given application. We adopt the bottleneck algorithm in all experiments
in this work because we consistently work in regimes where N > M at most points in time,
and we do not make use of any kernels for which D = 1.

Also note that these results highlight that using Algorithm 2 to perform the second step in
Algorithm 3 is only optimal if N > M . If a problem were encountered for which N < M it
would be prudent to consider replacing it with Algorithm 1.

	Table of contents
	List of figures
	List of tables
	1 Introduction and Background
	1.1 Standard GP Regression
	1.2 Definition and Exact Inference
	1.3 Pseudo-Point Approximations
	1.3.1 Pseudo-Point Approximation as Variational Inference
	1.3.2 The Unsaturated Bound
	1.3.3 The Saturated Bound
	1.3.4 Alternative Formulations of Pseudo-Point Approximations
	1.3.5 Benefits and Limitations

	1.4 Outline and Contributions

	2 The Gaussian Process Probabilistic Programme
	2.1 Introduction
	2.1.1 How Should Abstractions Be Judged?
	2.1.2 Collaborators

	2.2 The GPPP
	2.2.1 The Single-Process Perspective

	2.3 An Extensible Library of Affine Transformations
	2.3.1 Some Curiosities

	2.4 Practical Considerations
	2.4.1 The Primary AbstractGPs.jl Interface
	2.4.2 The Other Interfaces
	2.4.3 Other Important Implementation Details

	2.5 A Climatological Example
	2.6 The Interoperability Offered by Abstraction
	2.6.1 Scalability with Pseudo-Point Approximations
	2.6.2 Non-Gaussian Observation Models

	2.7 Related Work
	2.7.1 Multi-Output GPs
	2.7.2 Revisiting Kernels

	2.8 Conclusion

	3 Combining Pseudo-Point and State Space Approximations
	3.1 Introduction
	3.2 Sum-Separable Spatio-Temporal GPs
	3.3 State Space Approximations to Sum-Separable Spatio-Temporal GPs
	3.4 Conditional Independence Results
	3.4.1 The Conditional Independence Structure of Separable GPs
	3.4.2 Extending The Conditional Independence Result
	3.4.3 Separability of the State-Space Approximation
	3.4.4 Conditional Independence Structure of Observations and Pseudo-Points Under a Separable Prior
	3.4.5 Conditional Independence Structure under a Sum-Separable Prior

	3.5 Utilising Separability to Obtain the Best of Both Worlds
	3.5.1 Combining the Approximations

	3.6 Inference Under Non-Gaussian Observation Models
	3.7 Experiments
	3.7.1 Benchmarking
	3.7.2 Climatology Data
	3.7.3 Apartment Price Data

	3.8 Discussion

	4 Towards Gaussian Processes for Decadal Climate Prediction
	4.1 The Decadal Prediction Problem
	4.1.1 Approaches to Decadal Prediction

	4.2 Datasets and their Properties
	4.3 The Infinite Linear Mixing Model
	4.3.1 Approximate Inference

	4.4 Results
	4.4.1 Synthetic Data Experiments
	4.4.2 HadIOD

	4.5 Conclusion

	5 Discussion
	References
	Appendix A
	A.1 Multiple Dispatch

	Appendix B
	B.1 Conditional Independence Properties of Optimal Approximate Observation Models
	B.1.1 Conditional Independence Structure
	B.1.2 Approximate Inference via Exact Inference
	B.1.3 Block-Diagonal Structure

	B.2 Additional Experiment Details
	B.2.1 Benchmarking Experiment
	B.2.2 Climatology Data
	B.2.3 Apartment Data

	B.3 Efficient Inference in Linear Latent Gaussian Models
	B.3.1 Preliminaries
	B.3.2 Sampling
	B.3.3 Computing Marginal Probabilities
	B.3.4 Computing the Log Marginal Likelihood and Posterior
	B.3.5 Bottleneck Linear-Gaussian Observation Models
	B.3.6 Benchmarking Inference

